| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-it1ei |
|- ( _i x. 1 ) = _i |
| 2 |
1
|
eqcomi |
|- _i = ( _i x. 1 ) |
| 3 |
|
reixi |
|- ( _i x. _i ) = ( 0 -R 1 ) |
| 4 |
3
|
oveq2i |
|- ( _i x. ( _i x. _i ) ) = ( _i x. ( 0 -R 1 ) ) |
| 5 |
2 4
|
oveq12i |
|- ( _i + ( _i x. ( _i x. _i ) ) ) = ( ( _i x. 1 ) + ( _i x. ( 0 -R 1 ) ) ) |
| 6 |
|
ax-icn |
|- _i e. CC |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
1re |
|- 1 e. RR |
| 9 |
|
rernegcl |
|- ( 1 e. RR -> ( 0 -R 1 ) e. RR ) |
| 10 |
8 9
|
ax-mp |
|- ( 0 -R 1 ) e. RR |
| 11 |
10
|
recni |
|- ( 0 -R 1 ) e. CC |
| 12 |
6 7 11
|
adddii |
|- ( _i x. ( 1 + ( 0 -R 1 ) ) ) = ( ( _i x. 1 ) + ( _i x. ( 0 -R 1 ) ) ) |
| 13 |
|
renegid |
|- ( 1 e. RR -> ( 1 + ( 0 -R 1 ) ) = 0 ) |
| 14 |
8 13
|
ax-mp |
|- ( 1 + ( 0 -R 1 ) ) = 0 |
| 15 |
14
|
oveq2i |
|- ( _i x. ( 1 + ( 0 -R 1 ) ) ) = ( _i x. 0 ) |
| 16 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
| 17 |
15 16
|
eqtri |
|- ( _i x. ( 1 + ( 0 -R 1 ) ) ) = 0 |
| 18 |
5 12 17
|
3eqtr2i |
|- ( _i + ( _i x. ( _i x. _i ) ) ) = 0 |