| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-it1ei |
⊢ ( i · 1 ) = i |
| 2 |
1
|
eqcomi |
⊢ i = ( i · 1 ) |
| 3 |
|
reixi |
⊢ ( i · i ) = ( 0 −ℝ 1 ) |
| 4 |
3
|
oveq2i |
⊢ ( i · ( i · i ) ) = ( i · ( 0 −ℝ 1 ) ) |
| 5 |
2 4
|
oveq12i |
⊢ ( i + ( i · ( i · i ) ) ) = ( ( i · 1 ) + ( i · ( 0 −ℝ 1 ) ) ) |
| 6 |
|
ax-icn |
⊢ i ∈ ℂ |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
1re |
⊢ 1 ∈ ℝ |
| 9 |
|
rernegcl |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ 1 ) ∈ ℝ ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 0 −ℝ 1 ) ∈ ℝ |
| 11 |
10
|
recni |
⊢ ( 0 −ℝ 1 ) ∈ ℂ |
| 12 |
6 7 11
|
adddii |
⊢ ( i · ( 1 + ( 0 −ℝ 1 ) ) ) = ( ( i · 1 ) + ( i · ( 0 −ℝ 1 ) ) ) |
| 13 |
|
renegid |
⊢ ( 1 ∈ ℝ → ( 1 + ( 0 −ℝ 1 ) ) = 0 ) |
| 14 |
8 13
|
ax-mp |
⊢ ( 1 + ( 0 −ℝ 1 ) ) = 0 |
| 15 |
14
|
oveq2i |
⊢ ( i · ( 1 + ( 0 −ℝ 1 ) ) ) = ( i · 0 ) |
| 16 |
|
sn-it0e0 |
⊢ ( i · 0 ) = 0 |
| 17 |
15 16
|
eqtri |
⊢ ( i · ( 1 + ( 0 −ℝ 1 ) ) ) = 0 |
| 18 |
5 12 17
|
3eqtr2i |
⊢ ( i + ( i · ( i · i ) ) ) = 0 |