Step |
Hyp |
Ref |
Expression |
1 |
|
cnreeu.r |
⊢ ( 𝜑 → 𝑟 ∈ ℝ ) |
2 |
|
cnreeu.s |
⊢ ( 𝜑 → 𝑠 ∈ ℝ ) |
3 |
|
cnreeu.t |
⊢ ( 𝜑 → 𝑡 ∈ ℝ ) |
4 |
|
cnreeu.u |
⊢ ( 𝜑 → 𝑢 ∈ ℝ ) |
5 |
|
oveq1 |
⊢ ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) → ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
6 |
5
|
oveq2d |
⊢ ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) → ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) |
7 |
1
|
recnd |
⊢ ( 𝜑 → 𝑟 ∈ ℂ ) |
8 |
|
ax-icn |
⊢ i ∈ ℂ |
9 |
8
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
10 |
2
|
recnd |
⊢ ( 𝜑 → 𝑠 ∈ ℂ ) |
11 |
9 10
|
mulcld |
⊢ ( 𝜑 → ( i · 𝑠 ) ∈ ℂ ) |
12 |
|
rernegcl |
⊢ ( 𝑠 ∈ ℝ → ( 0 −ℝ 𝑠 ) ∈ ℝ ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ 𝑠 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( 𝜑 → ( 0 −ℝ 𝑠 ) ∈ ℂ ) |
15 |
9 14
|
mulcld |
⊢ ( 𝜑 → ( i · ( 0 −ℝ 𝑠 ) ) ∈ ℂ ) |
16 |
7 11 15
|
addassd |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( 𝑟 + ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) |
17 |
|
renegid |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 𝑠 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( i · ( 𝑠 + ( 0 −ℝ 𝑠 ) ) ) = ( i · 0 ) ) |
20 |
9 10 14
|
adddid |
⊢ ( 𝜑 → ( i · ( 𝑠 + ( 0 −ℝ 𝑠 ) ) ) = ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
21 |
|
sn-it0e0 |
⊢ ( i · 0 ) = 0 |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( i · 0 ) = 0 ) |
23 |
19 20 22
|
3eqtr3d |
⊢ ( 𝜑 → ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = 0 ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝑟 + ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( 𝑟 + 0 ) ) |
25 |
|
readdid1 |
⊢ ( 𝑟 ∈ ℝ → ( 𝑟 + 0 ) = 𝑟 ) |
26 |
1 25
|
syl |
⊢ ( 𝜑 → ( 𝑟 + 0 ) = 𝑟 ) |
27 |
16 24 26
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = 𝑟 ) |
28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) |
29 |
|
rernegcl |
⊢ ( 𝑡 ∈ ℝ → ( 0 −ℝ 𝑡 ) ∈ ℝ ) |
30 |
3 29
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ 𝑡 ) ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( 𝜑 → ( 0 −ℝ 𝑡 ) ∈ ℂ ) |
32 |
3
|
recnd |
⊢ ( 𝜑 → 𝑡 ∈ ℂ ) |
33 |
4
|
recnd |
⊢ ( 𝜑 → 𝑢 ∈ ℂ ) |
34 |
9 33
|
mulcld |
⊢ ( 𝜑 → ( i · 𝑢 ) ∈ ℂ ) |
35 |
31 32 34
|
addassd |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) = ( ( 0 −ℝ 𝑡 ) + ( 𝑡 + ( i · 𝑢 ) ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( ( 0 −ℝ 𝑡 ) + ( 𝑡 + ( i · 𝑢 ) ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
37 |
|
sn-addid2 |
⊢ ( ( i · 𝑢 ) ∈ ℂ → ( 0 + ( i · 𝑢 ) ) = ( i · 𝑢 ) ) |
38 |
34 37
|
syl |
⊢ ( 𝜑 → ( 0 + ( i · 𝑢 ) ) = ( i · 𝑢 ) ) |
39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( i · 𝑢 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
40 |
|
renegid2 |
⊢ ( 𝑡 ∈ ℝ → ( ( 0 −ℝ 𝑡 ) + 𝑡 ) = 0 ) |
41 |
3 40
|
syl |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑡 ) + 𝑡 ) = 0 ) |
42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) = ( 0 + ( i · 𝑢 ) ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( 0 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
44 |
9 33 14
|
adddid |
⊢ ( 𝜑 → ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) = ( ( i · 𝑢 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
45 |
39 43 44
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
46 |
32 34
|
addcld |
⊢ ( 𝜑 → ( 𝑡 + ( i · 𝑢 ) ) ∈ ℂ ) |
47 |
31 46 15
|
addassd |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + ( 𝑡 + ( i · 𝑢 ) ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) |
48 |
36 45 47
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
49 |
28 48
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ↔ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) ) |
50 |
49
|
biimpa |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
52 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑢 ∈ ℝ ) |
53 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 0 −ℝ 𝑠 ) ∈ ℝ ) |
54 |
52 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ∈ ℝ ) |
55 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 0 −ℝ 𝑡 ) ∈ ℝ ) |
56 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑟 ∈ ℝ ) |
57 |
55 56
|
readdcld |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ∈ ℝ ) |
58 |
51 57
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ∈ ℝ ) |
59 |
|
itrere |
⊢ ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ∈ ℝ → ( ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ∈ ℝ ↔ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) ) |
60 |
59
|
biimpa |
⊢ ( ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ∈ ℝ ∧ ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ∈ ℝ ) → ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
61 |
54 58 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
62 |
61
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) = ( i · 0 ) ) |
63 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( i · 0 ) = 0 ) |
64 |
51 62 63
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) |
65 |
|
oveq2 |
⊢ ( ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 → ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) = ( 𝑡 + 0 ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) = ( 𝑡 + 0 ) ) |
67 |
|
renegid |
⊢ ( 𝑡 ∈ ℝ → ( 𝑡 + ( 0 −ℝ 𝑡 ) ) = 0 ) |
68 |
3 67
|
syl |
⊢ ( 𝜑 → ( 𝑡 + ( 0 −ℝ 𝑡 ) ) = 0 ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + ( 0 −ℝ 𝑡 ) ) = 0 ) |
70 |
69
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( ( 𝑡 + ( 0 −ℝ 𝑡 ) ) + 𝑟 ) = ( 0 + 𝑟 ) ) |
71 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑡 ∈ ℂ ) |
72 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 0 −ℝ 𝑡 ) ∈ ℂ ) |
73 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑟 ∈ ℂ ) |
74 |
71 72 73
|
addassd |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( ( 𝑡 + ( 0 −ℝ 𝑡 ) ) + 𝑟 ) = ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) ) |
75 |
|
readdid2 |
⊢ ( 𝑟 ∈ ℝ → ( 0 + 𝑟 ) = 𝑟 ) |
76 |
1 75
|
syl |
⊢ ( 𝜑 → ( 0 + 𝑟 ) = 𝑟 ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 0 + 𝑟 ) = 𝑟 ) |
78 |
70 74 77
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) = 𝑟 ) |
79 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑡 ∈ ℝ ) |
80 |
|
readdid1 |
⊢ ( 𝑡 ∈ ℝ → ( 𝑡 + 0 ) = 𝑡 ) |
81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + 0 ) = 𝑡 ) |
82 |
66 78 81
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑟 = 𝑡 ) |
83 |
64 82
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑟 = 𝑡 ) |
84 |
33 14 10
|
addassd |
⊢ ( 𝜑 → ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) + 𝑠 ) = ( 𝑢 + ( ( 0 −ℝ 𝑠 ) + 𝑠 ) ) ) |
85 |
|
renegid2 |
⊢ ( 𝑠 ∈ ℝ → ( ( 0 −ℝ 𝑠 ) + 𝑠 ) = 0 ) |
86 |
2 85
|
syl |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑠 ) + 𝑠 ) = 0 ) |
87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( 𝑢 + ( ( 0 −ℝ 𝑠 ) + 𝑠 ) ) = ( 𝑢 + 0 ) ) |
88 |
|
readdid1 |
⊢ ( 𝑢 ∈ ℝ → ( 𝑢 + 0 ) = 𝑢 ) |
89 |
4 88
|
syl |
⊢ ( 𝜑 → ( 𝑢 + 0 ) = 𝑢 ) |
90 |
84 87 89
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) + 𝑠 ) = 𝑢 ) |
91 |
|
oveq1 |
⊢ ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 → ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) + 𝑠 ) = ( 0 + 𝑠 ) ) |
92 |
90 91
|
sylan9req |
⊢ ( ( 𝜑 ∧ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) → 𝑢 = ( 0 + 𝑠 ) ) |
93 |
|
readdid2 |
⊢ ( 𝑠 ∈ ℝ → ( 0 + 𝑠 ) = 𝑠 ) |
94 |
2 93
|
syl |
⊢ ( 𝜑 → ( 0 + 𝑠 ) = 𝑠 ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) → ( 0 + 𝑠 ) = 𝑠 ) |
96 |
92 95
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) → 𝑠 = 𝑢 ) |
97 |
61 96
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑠 = 𝑢 ) |
98 |
83 97
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) |
99 |
50 98
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) |
100 |
99
|
ex |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
101 |
6 100
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
102 |
|
id |
⊢ ( 𝑟 = 𝑡 → 𝑟 = 𝑡 ) |
103 |
|
oveq2 |
⊢ ( 𝑠 = 𝑢 → ( i · 𝑠 ) = ( i · 𝑢 ) ) |
104 |
102 103
|
oveqan12d |
⊢ ( ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) → ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) ) |
105 |
101 104
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) ↔ ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |