| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnreeu.r |
⊢ ( 𝜑 → 𝑟 ∈ ℝ ) |
| 2 |
|
cnreeu.s |
⊢ ( 𝜑 → 𝑠 ∈ ℝ ) |
| 3 |
|
cnreeu.t |
⊢ ( 𝜑 → 𝑡 ∈ ℝ ) |
| 4 |
|
cnreeu.u |
⊢ ( 𝜑 → 𝑢 ∈ ℝ ) |
| 5 |
|
oveq1 |
⊢ ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) → ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
| 6 |
5
|
oveq2d |
⊢ ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) → ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) |
| 7 |
1
|
recnd |
⊢ ( 𝜑 → 𝑟 ∈ ℂ ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 10 |
2
|
recnd |
⊢ ( 𝜑 → 𝑠 ∈ ℂ ) |
| 11 |
9 10
|
mulcld |
⊢ ( 𝜑 → ( i · 𝑠 ) ∈ ℂ ) |
| 12 |
|
rernegcl |
⊢ ( 𝑠 ∈ ℝ → ( 0 −ℝ 𝑠 ) ∈ ℝ ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ 𝑠 ) ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( 𝜑 → ( 0 −ℝ 𝑠 ) ∈ ℂ ) |
| 15 |
9 14
|
mulcld |
⊢ ( 𝜑 → ( i · ( 0 −ℝ 𝑠 ) ) ∈ ℂ ) |
| 16 |
7 11 15
|
addassd |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( 𝑟 + ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) |
| 17 |
|
renegid |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 𝑠 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( i · ( 𝑠 + ( 0 −ℝ 𝑠 ) ) ) = ( i · 0 ) ) |
| 20 |
9 10 14
|
adddid |
⊢ ( 𝜑 → ( i · ( 𝑠 + ( 0 −ℝ 𝑠 ) ) ) = ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
| 21 |
|
sn-it0e0 |
⊢ ( i · 0 ) = 0 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → ( i · 0 ) = 0 ) |
| 23 |
19 20 22
|
3eqtr3d |
⊢ ( 𝜑 → ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = 0 ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝑟 + ( ( i · 𝑠 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( 𝑟 + 0 ) ) |
| 25 |
|
readdrid |
⊢ ( 𝑟 ∈ ℝ → ( 𝑟 + 0 ) = 𝑟 ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → ( 𝑟 + 0 ) = 𝑟 ) |
| 27 |
16 24 26
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = 𝑟 ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) |
| 29 |
|
rernegcl |
⊢ ( 𝑡 ∈ ℝ → ( 0 −ℝ 𝑡 ) ∈ ℝ ) |
| 30 |
3 29
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ 𝑡 ) ∈ ℝ ) |
| 31 |
30
|
recnd |
⊢ ( 𝜑 → ( 0 −ℝ 𝑡 ) ∈ ℂ ) |
| 32 |
3
|
recnd |
⊢ ( 𝜑 → 𝑡 ∈ ℂ ) |
| 33 |
4
|
recnd |
⊢ ( 𝜑 → 𝑢 ∈ ℂ ) |
| 34 |
9 33
|
mulcld |
⊢ ( 𝜑 → ( i · 𝑢 ) ∈ ℂ ) |
| 35 |
31 32 34
|
addassd |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) = ( ( 0 −ℝ 𝑡 ) + ( 𝑡 + ( i · 𝑢 ) ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( ( 0 −ℝ 𝑡 ) + ( 𝑡 + ( i · 𝑢 ) ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
| 37 |
|
sn-addlid |
⊢ ( ( i · 𝑢 ) ∈ ℂ → ( 0 + ( i · 𝑢 ) ) = ( i · 𝑢 ) ) |
| 38 |
34 37
|
syl |
⊢ ( 𝜑 → ( 0 + ( i · 𝑢 ) ) = ( i · 𝑢 ) ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( i · 𝑢 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
| 40 |
|
renegid2 |
⊢ ( 𝑡 ∈ ℝ → ( ( 0 −ℝ 𝑡 ) + 𝑡 ) = 0 ) |
| 41 |
3 40
|
syl |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑡 ) + 𝑡 ) = 0 ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) = ( 0 + ( i · 𝑢 ) ) ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( 0 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
| 44 |
9 33 14
|
adddid |
⊢ ( 𝜑 → ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) = ( ( i · 𝑢 ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) |
| 45 |
39 43 44
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 0 −ℝ 𝑡 ) + 𝑡 ) + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
| 46 |
32 34
|
addcld |
⊢ ( 𝜑 → ( 𝑡 + ( i · 𝑢 ) ) ∈ ℂ ) |
| 47 |
31 46 15
|
addassd |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + ( 𝑡 + ( i · 𝑢 ) ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) |
| 48 |
36 45 47
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
| 49 |
28 48
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ↔ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) ) |
| 50 |
49
|
biimpa |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
| 51 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) |
| 52 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑢 ∈ ℝ ) |
| 53 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 0 −ℝ 𝑠 ) ∈ ℝ ) |
| 54 |
52 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ∈ ℝ ) |
| 55 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 0 −ℝ 𝑡 ) ∈ ℝ ) |
| 56 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑟 ∈ ℝ ) |
| 57 |
55 56
|
readdcld |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ∈ ℝ ) |
| 58 |
51 57
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ∈ ℝ ) |
| 59 |
|
sn-itrere |
⊢ ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ∈ ℝ → ( ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ∈ ℝ ↔ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) ) |
| 60 |
59
|
biimpa |
⊢ ( ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ∈ ℝ ∧ ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ∈ ℝ ) → ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
| 61 |
54 58 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) |
| 62 |
61
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) = ( i · 0 ) ) |
| 63 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( i · 0 ) = 0 ) |
| 64 |
51 62 63
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) |
| 65 |
|
oveq2 |
⊢ ( ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 → ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) = ( 𝑡 + 0 ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) = ( 𝑡 + 0 ) ) |
| 67 |
|
renegid |
⊢ ( 𝑡 ∈ ℝ → ( 𝑡 + ( 0 −ℝ 𝑡 ) ) = 0 ) |
| 68 |
3 67
|
syl |
⊢ ( 𝜑 → ( 𝑡 + ( 0 −ℝ 𝑡 ) ) = 0 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + ( 0 −ℝ 𝑡 ) ) = 0 ) |
| 70 |
69
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( ( 𝑡 + ( 0 −ℝ 𝑡 ) ) + 𝑟 ) = ( 0 + 𝑟 ) ) |
| 71 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑡 ∈ ℂ ) |
| 72 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 0 −ℝ 𝑡 ) ∈ ℂ ) |
| 73 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑟 ∈ ℂ ) |
| 74 |
71 72 73
|
addassd |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( ( 𝑡 + ( 0 −ℝ 𝑡 ) ) + 𝑟 ) = ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) ) |
| 75 |
|
readdlid |
⊢ ( 𝑟 ∈ ℝ → ( 0 + 𝑟 ) = 𝑟 ) |
| 76 |
1 75
|
syl |
⊢ ( 𝜑 → ( 0 + 𝑟 ) = 𝑟 ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 0 + 𝑟 ) = 𝑟 ) |
| 78 |
70 74 77
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + ( ( 0 −ℝ 𝑡 ) + 𝑟 ) ) = 𝑟 ) |
| 79 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑡 ∈ ℝ ) |
| 80 |
|
readdrid |
⊢ ( 𝑡 ∈ ℝ → ( 𝑡 + 0 ) = 𝑡 ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → ( 𝑡 + 0 ) = 𝑡 ) |
| 82 |
66 78 81
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = 0 ) → 𝑟 = 𝑡 ) |
| 83 |
64 82
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑟 = 𝑡 ) |
| 84 |
33 14 10
|
addassd |
⊢ ( 𝜑 → ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) + 𝑠 ) = ( 𝑢 + ( ( 0 −ℝ 𝑠 ) + 𝑠 ) ) ) |
| 85 |
|
renegid2 |
⊢ ( 𝑠 ∈ ℝ → ( ( 0 −ℝ 𝑠 ) + 𝑠 ) = 0 ) |
| 86 |
2 85
|
syl |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝑠 ) + 𝑠 ) = 0 ) |
| 87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( 𝑢 + ( ( 0 −ℝ 𝑠 ) + 𝑠 ) ) = ( 𝑢 + 0 ) ) |
| 88 |
|
readdrid |
⊢ ( 𝑢 ∈ ℝ → ( 𝑢 + 0 ) = 𝑢 ) |
| 89 |
4 88
|
syl |
⊢ ( 𝜑 → ( 𝑢 + 0 ) = 𝑢 ) |
| 90 |
84 87 89
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) + 𝑠 ) = 𝑢 ) |
| 91 |
|
oveq1 |
⊢ ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 → ( ( 𝑢 + ( 0 −ℝ 𝑠 ) ) + 𝑠 ) = ( 0 + 𝑠 ) ) |
| 92 |
90 91
|
sylan9req |
⊢ ( ( 𝜑 ∧ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) → 𝑢 = ( 0 + 𝑠 ) ) |
| 93 |
|
readdlid |
⊢ ( 𝑠 ∈ ℝ → ( 0 + 𝑠 ) = 𝑠 ) |
| 94 |
2 93
|
syl |
⊢ ( 𝜑 → ( 0 + 𝑠 ) = 𝑠 ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) → ( 0 + 𝑠 ) = 𝑠 ) |
| 96 |
92 95
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 + ( 0 −ℝ 𝑠 ) ) = 0 ) → 𝑠 = 𝑢 ) |
| 97 |
61 96
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → 𝑠 = 𝑢 ) |
| 98 |
83 97
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + 𝑟 ) = ( i · ( 𝑢 + ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) |
| 99 |
50 98
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) |
| 100 |
99
|
ex |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝑡 ) + ( ( 𝑟 + ( i · 𝑠 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) = ( ( 0 −ℝ 𝑡 ) + ( ( 𝑡 + ( i · 𝑢 ) ) + ( i · ( 0 −ℝ 𝑠 ) ) ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
| 101 |
6 100
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
| 102 |
|
id |
⊢ ( 𝑟 = 𝑡 → 𝑟 = 𝑡 ) |
| 103 |
|
oveq2 |
⊢ ( 𝑠 = 𝑢 → ( i · 𝑠 ) = ( i · 𝑢 ) ) |
| 104 |
102 103
|
oveqan12d |
⊢ ( ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) → ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) ) |
| 105 |
101 104
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑟 + ( i · 𝑠 ) ) = ( 𝑡 + ( i · 𝑢 ) ) ↔ ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |