Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
ax-icn |
|- _i e. CC |
3 |
1 2
|
mulcli |
|- ( 0 x. _i ) e. CC |
4 |
|
cnre |
|- ( ( 0 x. _i ) e. CC -> E. a e. RR E. b e. RR ( 0 x. _i ) = ( a + ( _i x. b ) ) ) |
5 |
|
simplr |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) = ( a + ( _i x. b ) ) ) |
6 |
|
neqne |
|- ( -. ( 0 x. _i ) = 0 -> ( 0 x. _i ) =/= 0 ) |
7 |
6
|
adantl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) =/= 0 ) |
8 |
|
simplll |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> a e. RR ) |
9 |
|
rernegcl |
|- ( a e. RR -> ( 0 -R a ) e. RR ) |
10 |
8 9
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 -R a ) e. RR ) |
11 |
|
1red |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> 1 e. RR ) |
12 |
10 11
|
readdcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R a ) + 1 ) e. RR ) |
13 |
|
ax-rrecex |
|- ( ( ( ( 0 -R a ) + 1 ) e. RR /\ ( ( 0 -R a ) + 1 ) =/= 0 ) -> E. x e. RR ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) |
14 |
12 13
|
sylan |
|- ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) -> E. x e. RR ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) |
15 |
2
|
a1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> _i e. CC ) |
16 |
10
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 -R a ) e. CC ) |
17 |
|
1cnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> 1 e. CC ) |
18 |
15 16 17
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( ( 0 -R a ) + 1 ) ) = ( ( _i x. ( 0 -R a ) ) + ( _i x. 1 ) ) ) |
19 |
|
it1ei |
|- ( _i x. 1 ) = _i |
20 |
19
|
oveq2i |
|- ( ( _i x. ( 0 -R a ) ) + ( _i x. 1 ) ) = ( ( _i x. ( 0 -R a ) ) + _i ) |
21 |
18 20
|
eqtrdi |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( ( 0 -R a ) + 1 ) ) = ( ( _i x. ( 0 -R a ) ) + _i ) ) |
22 |
21
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) = ( 0 x. ( ( _i x. ( 0 -R a ) ) + _i ) ) ) |
23 |
|
0cnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> 0 e. CC ) |
24 |
15 16
|
mulcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( 0 -R a ) ) e. CC ) |
25 |
23 24 15
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( ( _i x. ( 0 -R a ) ) + _i ) ) = ( ( 0 x. ( _i x. ( 0 -R a ) ) ) + ( 0 x. _i ) ) ) |
26 |
22 25
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) = ( ( 0 x. ( _i x. ( 0 -R a ) ) ) + ( 0 x. _i ) ) ) |
27 |
5
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R a ) + ( 0 x. _i ) ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) |
28 |
|
renegid2 |
|- ( a e. RR -> ( ( 0 -R a ) + a ) = 0 ) |
29 |
28
|
ad3antrrr |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R a ) + a ) = 0 ) |
30 |
29
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( ( 0 -R a ) + a ) + ( _i x. b ) ) = ( 0 + ( _i x. b ) ) ) |
31 |
8
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> a e. CC ) |
32 |
|
simpllr |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> b e. RR ) |
33 |
32
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> b e. CC ) |
34 |
15 33
|
mulcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. b ) e. CC ) |
35 |
16 31 34
|
addassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( ( 0 -R a ) + a ) + ( _i x. b ) ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) |
36 |
|
sn-addid2 |
|- ( ( _i x. b ) e. CC -> ( 0 + ( _i x. b ) ) = ( _i x. b ) ) |
37 |
34 36
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 + ( _i x. b ) ) = ( _i x. b ) ) |
38 |
30 35 37
|
3eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) = ( _i x. b ) ) |
39 |
27 38
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R a ) + ( 0 x. _i ) ) = ( _i x. b ) ) |
40 |
39
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( ( 0 -R a ) + ( 0 x. _i ) ) ) = ( ( 0 x. _i ) x. ( _i x. b ) ) ) |
41 |
3
|
a1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) e. CC ) |
42 |
41 16 41
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( ( 0 -R a ) + ( 0 x. _i ) ) ) = ( ( ( 0 x. _i ) x. ( 0 -R a ) ) + ( ( 0 x. _i ) x. ( 0 x. _i ) ) ) ) |
43 |
23 15 16
|
mulassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( 0 -R a ) ) = ( 0 x. ( _i x. ( 0 -R a ) ) ) ) |
44 |
41 23 15
|
mulassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( ( 0 x. _i ) x. 0 ) x. _i ) = ( ( 0 x. _i ) x. ( 0 x. _i ) ) ) |
45 |
|
sn-mul01 |
|- ( ( 0 x. _i ) e. CC -> ( ( 0 x. _i ) x. 0 ) = 0 ) |
46 |
41 45
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. 0 ) = 0 ) |
47 |
46
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( ( 0 x. _i ) x. 0 ) x. _i ) = ( 0 x. _i ) ) |
48 |
44 47
|
eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( 0 x. _i ) ) = ( 0 x. _i ) ) |
49 |
43 48
|
oveq12d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( ( 0 x. _i ) x. ( 0 -R a ) ) + ( ( 0 x. _i ) x. ( 0 x. _i ) ) ) = ( ( 0 x. ( _i x. ( 0 -R a ) ) ) + ( 0 x. _i ) ) ) |
50 |
42 49
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( ( 0 -R a ) + ( 0 x. _i ) ) ) = ( ( 0 x. ( _i x. ( 0 -R a ) ) ) + ( 0 x. _i ) ) ) |
51 |
23 15 34
|
mulassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( _i x. b ) ) = ( 0 x. ( _i x. ( _i x. b ) ) ) ) |
52 |
15 15 33
|
mulassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( _i x. _i ) x. b ) = ( _i x. ( _i x. b ) ) ) |
53 |
|
reixi |
|- ( _i x. _i ) = ( 0 -R 1 ) |
54 |
|
1re |
|- 1 e. RR |
55 |
|
rernegcl |
|- ( 1 e. RR -> ( 0 -R 1 ) e. RR ) |
56 |
54 55
|
ax-mp |
|- ( 0 -R 1 ) e. RR |
57 |
53 56
|
eqeltri |
|- ( _i x. _i ) e. RR |
58 |
57
|
a1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. _i ) e. RR ) |
59 |
58 32
|
remulcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( _i x. _i ) x. b ) e. RR ) |
60 |
52 59
|
eqeltrrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( _i x. b ) ) e. RR ) |
61 |
|
remul02 |
|- ( ( _i x. ( _i x. b ) ) e. RR -> ( 0 x. ( _i x. ( _i x. b ) ) ) = 0 ) |
62 |
60 61
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( _i x. b ) ) ) = 0 ) |
63 |
51 62
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) x. ( _i x. b ) ) = 0 ) |
64 |
40 50 63
|
3eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. ( _i x. ( 0 -R a ) ) ) + ( 0 x. _i ) ) = 0 ) |
65 |
26 64
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) = 0 ) |
66 |
65
|
ad2antrr |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) = 0 ) |
67 |
66
|
oveq1d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) x. x ) = ( 0 x. x ) ) |
68 |
|
0cnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> 0 e. CC ) |
69 |
2
|
a1i |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> _i e. CC ) |
70 |
10
|
ad2antrr |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( 0 -R a ) e. RR ) |
71 |
70
|
recnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( 0 -R a ) e. CC ) |
72 |
|
1cnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> 1 e. CC ) |
73 |
71 72
|
addcld |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( 0 -R a ) + 1 ) e. CC ) |
74 |
69 73
|
mulcld |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( _i x. ( ( 0 -R a ) + 1 ) ) e. CC ) |
75 |
|
simprl |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> x e. RR ) |
76 |
75
|
recnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> x e. CC ) |
77 |
68 74 76
|
mulassd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) x. x ) = ( 0 x. ( ( _i x. ( ( 0 -R a ) + 1 ) ) x. x ) ) ) |
78 |
69 73 76
|
mulassd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( _i x. ( ( 0 -R a ) + 1 ) ) x. x ) = ( _i x. ( ( ( 0 -R a ) + 1 ) x. x ) ) ) |
79 |
|
simprr |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) |
80 |
79
|
oveq2d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( _i x. ( ( ( 0 -R a ) + 1 ) x. x ) ) = ( _i x. 1 ) ) |
81 |
80 19
|
eqtrdi |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( _i x. ( ( ( 0 -R a ) + 1 ) x. x ) ) = _i ) |
82 |
78 81
|
eqtrd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( _i x. ( ( 0 -R a ) + 1 ) ) x. x ) = _i ) |
83 |
82
|
oveq2d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( 0 x. ( ( _i x. ( ( 0 -R a ) + 1 ) ) x. x ) ) = ( 0 x. _i ) ) |
84 |
77 83
|
eqtrd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( ( 0 x. ( _i x. ( ( 0 -R a ) + 1 ) ) ) x. x ) = ( 0 x. _i ) ) |
85 |
|
remul02 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
86 |
75 85
|
syl |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( 0 x. x ) = 0 ) |
87 |
67 84 86
|
3eqtr3d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) /\ ( x e. RR /\ ( ( ( 0 -R a ) + 1 ) x. x ) = 1 ) ) -> ( 0 x. _i ) = 0 ) |
88 |
14 87
|
rexlimddv |
|- ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( ( 0 -R a ) + 1 ) =/= 0 ) -> ( 0 x. _i ) = 0 ) |
89 |
88
|
ex |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( ( 0 -R a ) + 1 ) =/= 0 -> ( 0 x. _i ) = 0 ) ) |
90 |
89
|
necon1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) =/= 0 -> ( ( 0 -R a ) + 1 ) = 0 ) ) |
91 |
7 90
|
mpd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R a ) + 1 ) = 0 ) |
92 |
91
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( a + ( ( 0 -R a ) + 1 ) ) = ( a + 0 ) ) |
93 |
31 16 17
|
addassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( a + ( 0 -R a ) ) + 1 ) = ( a + ( ( 0 -R a ) + 1 ) ) ) |
94 |
|
renegid |
|- ( a e. RR -> ( a + ( 0 -R a ) ) = 0 ) |
95 |
8 94
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( a + ( 0 -R a ) ) = 0 ) |
96 |
95
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( a + ( 0 -R a ) ) + 1 ) = ( 0 + 1 ) ) |
97 |
|
readdid2 |
|- ( 1 e. RR -> ( 0 + 1 ) = 1 ) |
98 |
54 97
|
ax-mp |
|- ( 0 + 1 ) = 1 |
99 |
96 98
|
eqtrdi |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( a + ( 0 -R a ) ) + 1 ) = 1 ) |
100 |
93 99
|
eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( a + ( ( 0 -R a ) + 1 ) ) = 1 ) |
101 |
|
readdid1 |
|- ( a e. RR -> ( a + 0 ) = a ) |
102 |
8 101
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( a + 0 ) = a ) |
103 |
92 100 102
|
3eqtr3rd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> a = 1 ) |
104 |
|
rernegcl |
|- ( b e. RR -> ( 0 -R b ) e. RR ) |
105 |
32 104
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 -R b ) e. RR ) |
106 |
11 105
|
readdcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 1 + ( 0 -R b ) ) e. RR ) |
107 |
|
ax-rrecex |
|- ( ( ( 1 + ( 0 -R b ) ) e. RR /\ ( 1 + ( 0 -R b ) ) =/= 0 ) -> E. y e. RR ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) |
108 |
106 107
|
sylan |
|- ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) -> E. y e. RR ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) |
109 |
105
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 -R b ) e. CC ) |
110 |
15 109
|
mulcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( 0 -R b ) ) e. CC ) |
111 |
23 15 110
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i + ( _i x. ( 0 -R b ) ) ) ) = ( ( 0 x. _i ) + ( 0 x. ( _i x. ( 0 -R b ) ) ) ) ) |
112 |
|
0re |
|- 0 e. RR |
113 |
|
remul02 |
|- ( 0 e. RR -> ( 0 x. 0 ) = 0 ) |
114 |
112 113
|
ax-mp |
|- ( 0 x. 0 ) = 0 |
115 |
114
|
oveq1i |
|- ( ( 0 x. 0 ) x. _i ) = ( 0 x. _i ) |
116 |
1 1 2
|
mulassi |
|- ( ( 0 x. 0 ) x. _i ) = ( 0 x. ( 0 x. _i ) ) |
117 |
115 116
|
eqtr3i |
|- ( 0 x. _i ) = ( 0 x. ( 0 x. _i ) ) |
118 |
117
|
a1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) = ( 0 x. ( 0 x. _i ) ) ) |
119 |
118
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) + ( 0 x. ( _i x. ( 0 -R b ) ) ) ) = ( ( 0 x. ( 0 x. _i ) ) + ( 0 x. ( _i x. ( 0 -R b ) ) ) ) ) |
120 |
111 119
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i + ( _i x. ( 0 -R b ) ) ) ) = ( ( 0 x. ( 0 x. _i ) ) + ( 0 x. ( _i x. ( 0 -R b ) ) ) ) ) |
121 |
15 17 109
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( 1 + ( 0 -R b ) ) ) = ( ( _i x. 1 ) + ( _i x. ( 0 -R b ) ) ) ) |
122 |
19
|
a1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. 1 ) = _i ) |
123 |
122
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( _i x. 1 ) + ( _i x. ( 0 -R b ) ) ) = ( _i + ( _i x. ( 0 -R b ) ) ) ) |
124 |
121 123
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( 1 + ( 0 -R b ) ) ) = ( _i + ( _i x. ( 0 -R b ) ) ) ) |
125 |
124
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) = ( 0 x. ( _i + ( _i x. ( 0 -R b ) ) ) ) ) |
126 |
23 41 110
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( ( 0 x. _i ) + ( _i x. ( 0 -R b ) ) ) ) = ( ( 0 x. ( 0 x. _i ) ) + ( 0 x. ( _i x. ( 0 -R b ) ) ) ) ) |
127 |
120 125 126
|
3eqtr4d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) = ( 0 x. ( ( 0 x. _i ) + ( _i x. ( 0 -R b ) ) ) ) ) |
128 |
103
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( a + ( _i x. b ) ) = ( 1 + ( _i x. b ) ) ) |
129 |
5 128
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) = ( 1 + ( _i x. b ) ) ) |
130 |
129
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) + ( _i x. ( 0 -R b ) ) ) = ( ( 1 + ( _i x. b ) ) + ( _i x. ( 0 -R b ) ) ) ) |
131 |
17 34 110
|
addassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 1 + ( _i x. b ) ) + ( _i x. ( 0 -R b ) ) ) = ( 1 + ( ( _i x. b ) + ( _i x. ( 0 -R b ) ) ) ) ) |
132 |
|
renegid |
|- ( b e. RR -> ( b + ( 0 -R b ) ) = 0 ) |
133 |
32 132
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( b + ( 0 -R b ) ) = 0 ) |
134 |
133
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( b + ( 0 -R b ) ) ) = ( _i x. 0 ) ) |
135 |
15 33 109
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. ( b + ( 0 -R b ) ) ) = ( ( _i x. b ) + ( _i x. ( 0 -R b ) ) ) ) |
136 |
|
sn-mul01 |
|- ( _i e. CC -> ( _i x. 0 ) = 0 ) |
137 |
2 136
|
mp1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. 0 ) = 0 ) |
138 |
134 135 137
|
3eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( _i x. b ) + ( _i x. ( 0 -R b ) ) ) = 0 ) |
139 |
138
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 1 + ( ( _i x. b ) + ( _i x. ( 0 -R b ) ) ) ) = ( 1 + 0 ) ) |
140 |
|
readdid1 |
|- ( 1 e. RR -> ( 1 + 0 ) = 1 ) |
141 |
54 140
|
ax-mp |
|- ( 1 + 0 ) = 1 |
142 |
139 141
|
eqtrdi |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 1 + ( ( _i x. b ) + ( _i x. ( 0 -R b ) ) ) ) = 1 ) |
143 |
131 142
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 1 + ( _i x. b ) ) + ( _i x. ( 0 -R b ) ) ) = 1 ) |
144 |
130 143
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) + ( _i x. ( 0 -R b ) ) ) = 1 ) |
145 |
144
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( ( 0 x. _i ) + ( _i x. ( 0 -R b ) ) ) ) = ( 0 x. 1 ) ) |
146 |
127 145
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) = ( 0 x. 1 ) ) |
147 |
|
ax-1rid |
|- ( 0 e. RR -> ( 0 x. 1 ) = 0 ) |
148 |
112 147
|
ax-mp |
|- ( 0 x. 1 ) = 0 |
149 |
146 148
|
eqtrdi |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) = 0 ) |
150 |
149
|
ad2antrr |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) = 0 ) |
151 |
150
|
oveq1d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) x. y ) = ( 0 x. y ) ) |
152 |
|
0cnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> 0 e. CC ) |
153 |
2
|
a1i |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> _i e. CC ) |
154 |
|
1cnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> 1 e. CC ) |
155 |
109
|
ad2antrr |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( 0 -R b ) e. CC ) |
156 |
154 155
|
addcld |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( 1 + ( 0 -R b ) ) e. CC ) |
157 |
153 156
|
mulcld |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( _i x. ( 1 + ( 0 -R b ) ) ) e. CC ) |
158 |
|
simprl |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> y e. RR ) |
159 |
158
|
recnd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> y e. CC ) |
160 |
152 157 159
|
mulassd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) x. y ) = ( 0 x. ( ( _i x. ( 1 + ( 0 -R b ) ) ) x. y ) ) ) |
161 |
153 156 159
|
mulassd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( ( _i x. ( 1 + ( 0 -R b ) ) ) x. y ) = ( _i x. ( ( 1 + ( 0 -R b ) ) x. y ) ) ) |
162 |
|
simprr |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) |
163 |
162
|
oveq2d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( _i x. ( ( 1 + ( 0 -R b ) ) x. y ) ) = ( _i x. 1 ) ) |
164 |
163 19
|
eqtrdi |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( _i x. ( ( 1 + ( 0 -R b ) ) x. y ) ) = _i ) |
165 |
161 164
|
eqtrd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( ( _i x. ( 1 + ( 0 -R b ) ) ) x. y ) = _i ) |
166 |
165
|
oveq2d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( 0 x. ( ( _i x. ( 1 + ( 0 -R b ) ) ) x. y ) ) = ( 0 x. _i ) ) |
167 |
160 166
|
eqtrd |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( ( 0 x. ( _i x. ( 1 + ( 0 -R b ) ) ) ) x. y ) = ( 0 x. _i ) ) |
168 |
|
remul02 |
|- ( y e. RR -> ( 0 x. y ) = 0 ) |
169 |
158 168
|
syl |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( 0 x. y ) = 0 ) |
170 |
151 167 169
|
3eqtr3d |
|- ( ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) /\ ( y e. RR /\ ( ( 1 + ( 0 -R b ) ) x. y ) = 1 ) ) -> ( 0 x. _i ) = 0 ) |
171 |
108 170
|
rexlimddv |
|- ( ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) /\ ( 1 + ( 0 -R b ) ) =/= 0 ) -> ( 0 x. _i ) = 0 ) |
172 |
171
|
ex |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 1 + ( 0 -R b ) ) =/= 0 -> ( 0 x. _i ) = 0 ) ) |
173 |
172
|
necon1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 x. _i ) =/= 0 -> ( 1 + ( 0 -R b ) ) = 0 ) ) |
174 |
7 173
|
mpd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 1 + ( 0 -R b ) ) = 0 ) |
175 |
174
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 1 + ( 0 -R b ) ) + b ) = ( 0 + b ) ) |
176 |
17 109 33
|
addassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 1 + ( 0 -R b ) ) + b ) = ( 1 + ( ( 0 -R b ) + b ) ) ) |
177 |
|
renegid2 |
|- ( b e. RR -> ( ( 0 -R b ) + b ) = 0 ) |
178 |
32 177
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 0 -R b ) + b ) = 0 ) |
179 |
178
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 1 + ( ( 0 -R b ) + b ) ) = ( 1 + 0 ) ) |
180 |
179 141
|
eqtrdi |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 1 + ( ( 0 -R b ) + b ) ) = 1 ) |
181 |
176 180
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( ( 1 + ( 0 -R b ) ) + b ) = 1 ) |
182 |
|
readdid2 |
|- ( b e. RR -> ( 0 + b ) = b ) |
183 |
32 182
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 + b ) = b ) |
184 |
175 181 183
|
3eqtr3rd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> b = 1 ) |
185 |
184
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( _i x. b ) = ( _i x. 1 ) ) |
186 |
103 185
|
oveq12d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( a + ( _i x. b ) ) = ( 1 + ( _i x. 1 ) ) ) |
187 |
5 186
|
eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) = ( 1 + ( _i x. 1 ) ) ) |
188 |
19
|
oveq2i |
|- ( 1 + ( _i x. 1 ) ) = ( 1 + _i ) |
189 |
188
|
eqeq2i |
|- ( ( 0 x. _i ) = ( 1 + ( _i x. 1 ) ) <-> ( 0 x. _i ) = ( 1 + _i ) ) |
190 |
|
oveq2 |
|- ( ( 0 x. _i ) = ( 1 + _i ) -> ( ( ( _i x. _i ) x. _i ) x. ( 0 x. _i ) ) = ( ( ( _i x. _i ) x. _i ) x. ( 1 + _i ) ) ) |
191 |
2 2
|
mulcli |
|- ( _i x. _i ) e. CC |
192 |
191 2
|
mulcli |
|- ( ( _i x. _i ) x. _i ) e. CC |
193 |
192 1 2
|
mulassi |
|- ( ( ( ( _i x. _i ) x. _i ) x. 0 ) x. _i ) = ( ( ( _i x. _i ) x. _i ) x. ( 0 x. _i ) ) |
194 |
|
sn-mul01 |
|- ( ( ( _i x. _i ) x. _i ) e. CC -> ( ( ( _i x. _i ) x. _i ) x. 0 ) = 0 ) |
195 |
192 194
|
ax-mp |
|- ( ( ( _i x. _i ) x. _i ) x. 0 ) = 0 |
196 |
195
|
oveq1i |
|- ( ( ( ( _i x. _i ) x. _i ) x. 0 ) x. _i ) = ( 0 x. _i ) |
197 |
193 196
|
eqtr3i |
|- ( ( ( _i x. _i ) x. _i ) x. ( 0 x. _i ) ) = ( 0 x. _i ) |
198 |
|
ax-1cn |
|- 1 e. CC |
199 |
192 198 2
|
adddii |
|- ( ( ( _i x. _i ) x. _i ) x. ( 1 + _i ) ) = ( ( ( ( _i x. _i ) x. _i ) x. 1 ) + ( ( ( _i x. _i ) x. _i ) x. _i ) ) |
200 |
191 2 198
|
mulassi |
|- ( ( ( _i x. _i ) x. _i ) x. 1 ) = ( ( _i x. _i ) x. ( _i x. 1 ) ) |
201 |
19
|
oveq2i |
|- ( ( _i x. _i ) x. ( _i x. 1 ) ) = ( ( _i x. _i ) x. _i ) |
202 |
200 201
|
eqtri |
|- ( ( ( _i x. _i ) x. _i ) x. 1 ) = ( ( _i x. _i ) x. _i ) |
203 |
191 2 2
|
mulassi |
|- ( ( ( _i x. _i ) x. _i ) x. _i ) = ( ( _i x. _i ) x. ( _i x. _i ) ) |
204 |
|
rei4 |
|- ( ( _i x. _i ) x. ( _i x. _i ) ) = 1 |
205 |
203 204
|
eqtri |
|- ( ( ( _i x. _i ) x. _i ) x. _i ) = 1 |
206 |
202 205
|
oveq12i |
|- ( ( ( ( _i x. _i ) x. _i ) x. 1 ) + ( ( ( _i x. _i ) x. _i ) x. _i ) ) = ( ( ( _i x. _i ) x. _i ) + 1 ) |
207 |
199 206
|
eqtri |
|- ( ( ( _i x. _i ) x. _i ) x. ( 1 + _i ) ) = ( ( ( _i x. _i ) x. _i ) + 1 ) |
208 |
190 197 207
|
3eqtr3g |
|- ( ( 0 x. _i ) = ( 1 + _i ) -> ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) |
209 |
54 54
|
readdcli |
|- ( 1 + 1 ) e. RR |
210 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
211 |
|
sn-0ne2 |
|- 0 =/= 2 |
212 |
211
|
necomi |
|- 2 =/= 0 |
213 |
210 212
|
eqnetrri |
|- ( 1 + 1 ) =/= 0 |
214 |
|
ax-rrecex |
|- ( ( ( 1 + 1 ) e. RR /\ ( 1 + 1 ) =/= 0 ) -> E. z e. RR ( ( 1 + 1 ) x. z ) = 1 ) |
215 |
209 213 214
|
mp2an |
|- E. z e. RR ( ( 1 + 1 ) x. z ) = 1 |
216 |
192 198
|
addcli |
|- ( ( ( _i x. _i ) x. _i ) + 1 ) e. CC |
217 |
198 2 216
|
addassi |
|- ( ( 1 + _i ) + ( ( ( _i x. _i ) x. _i ) + 1 ) ) = ( 1 + ( _i + ( ( ( _i x. _i ) x. _i ) + 1 ) ) ) |
218 |
2 192 198
|
addassi |
|- ( ( _i + ( ( _i x. _i ) x. _i ) ) + 1 ) = ( _i + ( ( ( _i x. _i ) x. _i ) + 1 ) ) |
219 |
218
|
oveq2i |
|- ( 1 + ( ( _i + ( ( _i x. _i ) x. _i ) ) + 1 ) ) = ( 1 + ( _i + ( ( ( _i x. _i ) x. _i ) + 1 ) ) ) |
220 |
2 2 2
|
mulassi |
|- ( ( _i x. _i ) x. _i ) = ( _i x. ( _i x. _i ) ) |
221 |
220
|
oveq2i |
|- ( _i + ( ( _i x. _i ) x. _i ) ) = ( _i + ( _i x. ( _i x. _i ) ) ) |
222 |
|
ipiiie0 |
|- ( _i + ( _i x. ( _i x. _i ) ) ) = 0 |
223 |
221 222
|
eqtri |
|- ( _i + ( ( _i x. _i ) x. _i ) ) = 0 |
224 |
223
|
oveq1i |
|- ( ( _i + ( ( _i x. _i ) x. _i ) ) + 1 ) = ( 0 + 1 ) |
225 |
224 98
|
eqtri |
|- ( ( _i + ( ( _i x. _i ) x. _i ) ) + 1 ) = 1 |
226 |
225
|
oveq2i |
|- ( 1 + ( ( _i + ( ( _i x. _i ) x. _i ) ) + 1 ) ) = ( 1 + 1 ) |
227 |
217 219 226
|
3eqtr2i |
|- ( ( 1 + _i ) + ( ( ( _i x. _i ) x. _i ) + 1 ) ) = ( 1 + 1 ) |
228 |
227
|
a1i |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( 1 + _i ) + ( ( ( _i x. _i ) x. _i ) + 1 ) ) = ( 1 + 1 ) ) |
229 |
3 198 198
|
adddii |
|- ( ( 0 x. _i ) x. ( 1 + 1 ) ) = ( ( ( 0 x. _i ) x. 1 ) + ( ( 0 x. _i ) x. 1 ) ) |
230 |
1 2 198
|
mulassi |
|- ( ( 0 x. _i ) x. 1 ) = ( 0 x. ( _i x. 1 ) ) |
231 |
19
|
oveq2i |
|- ( 0 x. ( _i x. 1 ) ) = ( 0 x. _i ) |
232 |
230 231
|
eqtri |
|- ( ( 0 x. _i ) x. 1 ) = ( 0 x. _i ) |
233 |
|
simpl |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( 0 x. _i ) = ( 1 + _i ) ) |
234 |
232 233
|
syl5eq |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( 0 x. _i ) x. 1 ) = ( 1 + _i ) ) |
235 |
|
simpr |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) |
236 |
232 235
|
syl5eq |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( 0 x. _i ) x. 1 ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) |
237 |
234 236
|
oveq12d |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( ( 0 x. _i ) x. 1 ) + ( ( 0 x. _i ) x. 1 ) ) = ( ( 1 + _i ) + ( ( ( _i x. _i ) x. _i ) + 1 ) ) ) |
238 |
229 237
|
syl5eq |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( 0 x. _i ) x. ( 1 + 1 ) ) = ( ( 1 + _i ) + ( ( ( _i x. _i ) x. _i ) + 1 ) ) ) |
239 |
|
remulid2 |
|- ( ( 1 + 1 ) e. RR -> ( 1 x. ( 1 + 1 ) ) = ( 1 + 1 ) ) |
240 |
209 239
|
mp1i |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( 1 x. ( 1 + 1 ) ) = ( 1 + 1 ) ) |
241 |
228 238 240
|
3eqtr4d |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( 0 x. _i ) x. ( 1 + 1 ) ) = ( 1 x. ( 1 + 1 ) ) ) |
242 |
241
|
oveq1d |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( ( ( 0 x. _i ) x. ( 1 + 1 ) ) x. z ) = ( ( 1 x. ( 1 + 1 ) ) x. z ) ) |
243 |
242
|
adantr |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( ( 0 x. _i ) x. ( 1 + 1 ) ) x. z ) = ( ( 1 x. ( 1 + 1 ) ) x. z ) ) |
244 |
3
|
a1i |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( 0 x. _i ) e. CC ) |
245 |
|
1cnd |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> 1 e. CC ) |
246 |
245 245
|
addcld |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( 1 + 1 ) e. CC ) |
247 |
|
simprl |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> z e. RR ) |
248 |
247
|
recnd |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> z e. CC ) |
249 |
244 246 248
|
mulassd |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( ( 0 x. _i ) x. ( 1 + 1 ) ) x. z ) = ( ( 0 x. _i ) x. ( ( 1 + 1 ) x. z ) ) ) |
250 |
|
simprr |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( 1 + 1 ) x. z ) = 1 ) |
251 |
250
|
oveq2d |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( 0 x. _i ) x. ( ( 1 + 1 ) x. z ) ) = ( ( 0 x. _i ) x. 1 ) ) |
252 |
251 232
|
eqtrdi |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( 0 x. _i ) x. ( ( 1 + 1 ) x. z ) ) = ( 0 x. _i ) ) |
253 |
249 252
|
eqtrd |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( ( 0 x. _i ) x. ( 1 + 1 ) ) x. z ) = ( 0 x. _i ) ) |
254 |
245 246 248
|
mulassd |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( 1 x. ( 1 + 1 ) ) x. z ) = ( 1 x. ( ( 1 + 1 ) x. z ) ) ) |
255 |
250
|
oveq2d |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( 1 x. ( ( 1 + 1 ) x. z ) ) = ( 1 x. 1 ) ) |
256 |
|
1t1e1ALT |
|- ( 1 x. 1 ) = 1 |
257 |
255 256
|
eqtrdi |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( 1 x. ( ( 1 + 1 ) x. z ) ) = 1 ) |
258 |
254 257
|
eqtrd |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( ( 1 x. ( 1 + 1 ) ) x. z ) = 1 ) |
259 |
243 253 258
|
3eqtr3d |
|- ( ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) /\ ( z e. RR /\ ( ( 1 + 1 ) x. z ) = 1 ) ) -> ( 0 x. _i ) = 1 ) |
260 |
259
|
rexlimdvaa |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( E. z e. RR ( ( 1 + 1 ) x. z ) = 1 -> ( 0 x. _i ) = 1 ) ) |
261 |
215 260
|
mpi |
|- ( ( ( 0 x. _i ) = ( 1 + _i ) /\ ( 0 x. _i ) = ( ( ( _i x. _i ) x. _i ) + 1 ) ) -> ( 0 x. _i ) = 1 ) |
262 |
208 261
|
mpdan |
|- ( ( 0 x. _i ) = ( 1 + _i ) -> ( 0 x. _i ) = 1 ) |
263 |
189 262
|
sylbi |
|- ( ( 0 x. _i ) = ( 1 + ( _i x. 1 ) ) -> ( 0 x. _i ) = 1 ) |
264 |
|
oveq2 |
|- ( ( 0 x. _i ) = 1 -> ( 0 x. ( 0 x. _i ) ) = ( 0 x. 1 ) ) |
265 |
116 115
|
eqtr3i |
|- ( 0 x. ( 0 x. _i ) ) = ( 0 x. _i ) |
266 |
264 265 148
|
3eqtr3g |
|- ( ( 0 x. _i ) = 1 -> ( 0 x. _i ) = 0 ) |
267 |
263 266
|
syl |
|- ( ( 0 x. _i ) = ( 1 + ( _i x. 1 ) ) -> ( 0 x. _i ) = 0 ) |
268 |
187 267
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) /\ -. ( 0 x. _i ) = 0 ) -> ( 0 x. _i ) = 0 ) |
269 |
268
|
pm2.18da |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( 0 x. _i ) = ( a + ( _i x. b ) ) ) -> ( 0 x. _i ) = 0 ) |
270 |
269
|
ex |
|- ( ( a e. RR /\ b e. RR ) -> ( ( 0 x. _i ) = ( a + ( _i x. b ) ) -> ( 0 x. _i ) = 0 ) ) |
271 |
270
|
rexlimivv |
|- ( E. a e. RR E. b e. RR ( 0 x. _i ) = ( a + ( _i x. b ) ) -> ( 0 x. _i ) = 0 ) |
272 |
3 4 271
|
mp2b |
|- ( 0 x. _i ) = 0 |