| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| 2 |
|
0cnd |
|- ( ( x e. RR /\ y e. RR ) -> 0 e. CC ) |
| 3 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 4 |
3
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> x e. CC ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
5
|
a1i |
|- ( ( x e. RR /\ y e. RR ) -> _i e. CC ) |
| 7 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 8 |
7
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> y e. CC ) |
| 9 |
6 8
|
mulcld |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) e. CC ) |
| 10 |
2 4 9
|
adddid |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) ) |
| 11 |
|
remul02 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
| 12 |
11
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. x ) = 0 ) |
| 13 |
|
sn-0tie0 |
|- ( 0 x. _i ) = 0 |
| 14 |
13
|
oveq1i |
|- ( ( 0 x. _i ) x. y ) = ( 0 x. y ) |
| 15 |
2 6 8
|
mulassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 x. _i ) x. y ) = ( 0 x. ( _i x. y ) ) ) |
| 16 |
|
remul02 |
|- ( y e. RR -> ( 0 x. y ) = 0 ) |
| 17 |
16
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. y ) = 0 ) |
| 18 |
14 15 17
|
3eqtr3a |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( _i x. y ) ) = 0 ) |
| 19 |
12 18
|
oveq12d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) = ( 0 + 0 ) ) |
| 20 |
|
sn-00id |
|- ( 0 + 0 ) = 0 |
| 21 |
19 20
|
eqtrdi |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) = 0 ) |
| 22 |
10 21
|
eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = 0 ) |
| 23 |
|
oveq2 |
|- ( A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = ( 0 x. ( x + ( _i x. y ) ) ) ) |
| 24 |
23
|
eqeq1d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( 0 x. A ) = 0 <-> ( 0 x. ( x + ( _i x. y ) ) ) = 0 ) ) |
| 25 |
22 24
|
syl5ibrcom |
|- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = 0 ) ) |
| 26 |
25
|
rexlimivv |
|- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = 0 ) |
| 27 |
1 26
|
syl |
|- ( A e. CC -> ( 0 x. A ) = 0 ) |