| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 2 |
|
0cnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 0 ∈ ℂ ) |
| 3 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 5 |
|
ax-icn |
⊢ i ∈ ℂ |
| 6 |
5
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → i ∈ ℂ ) |
| 7 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 9 |
6 8
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · 𝑦 ) ∈ ℂ ) |
| 10 |
2 4 9
|
adddid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) ) |
| 11 |
|
remul02 |
⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
| 13 |
|
sn-0tie0 |
⊢ ( 0 · i ) = 0 |
| 14 |
13
|
oveq1i |
⊢ ( ( 0 · i ) · 𝑦 ) = ( 0 · 𝑦 ) |
| 15 |
2 6 8
|
mulassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 · i ) · 𝑦 ) = ( 0 · ( i · 𝑦 ) ) ) |
| 16 |
|
remul02 |
⊢ ( 𝑦 ∈ ℝ → ( 0 · 𝑦 ) = 0 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · 𝑦 ) = 0 ) |
| 18 |
14 15 17
|
3eqtr3a |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( i · 𝑦 ) ) = 0 ) |
| 19 |
12 18
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) = ( 0 + 0 ) ) |
| 20 |
|
sn-00id |
⊢ ( 0 + 0 ) = 0 |
| 21 |
19 20
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) = 0 ) |
| 22 |
10 21
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) |
| 23 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 24 |
23
|
eqeq1d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 0 · 𝐴 ) = 0 ↔ ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 25 |
22 24
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = 0 ) ) |
| 26 |
25
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = 0 ) |
| 27 |
1 26
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |