| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 4 | 2 3 | lttri2i | ⊢ ( 1  ≠  0  ↔  ( 1  <  0  ∨  0  <  1 ) ) | 
						
							| 5 | 1 4 | mpbi | ⊢ ( 1  <  0  ∨  0  <  1 ) | 
						
							| 6 |  | rernegcl | ⊢ ( 1  ∈  ℝ  →  ( 0  −ℝ  1 )  ∈  ℝ ) | 
						
							| 7 | 2 6 | mp1i | ⊢ ( 1  <  0  →  ( 0  −ℝ  1 )  ∈  ℝ ) | 
						
							| 8 |  | relt0neg1 | ⊢ ( 1  ∈  ℝ  →  ( 1  <  0  ↔  0  <  ( 0  −ℝ  1 ) ) ) | 
						
							| 9 | 2 8 | ax-mp | ⊢ ( 1  <  0  ↔  0  <  ( 0  −ℝ  1 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 1  <  0  →  0  <  ( 0  −ℝ  1 ) ) | 
						
							| 11 | 7 7 10 10 | mulgt0d | ⊢ ( 1  <  0  →  0  <  ( ( 0  −ℝ  1 )  ·  ( 0  −ℝ  1 ) ) ) | 
						
							| 12 |  | 1red | ⊢ ( 1  ∈  ℝ  →  1  ∈  ℝ ) | 
						
							| 13 | 6 12 | remulneg2d | ⊢ ( 1  ∈  ℝ  →  ( ( 0  −ℝ  1 )  ·  ( 0  −ℝ  1 ) )  =  ( 0  −ℝ  ( ( 0  −ℝ  1 )  ·  1 ) ) ) | 
						
							| 14 |  | ax-1rid | ⊢ ( ( 0  −ℝ  1 )  ∈  ℝ  →  ( ( 0  −ℝ  1 )  ·  1 )  =  ( 0  −ℝ  1 ) ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 1  ∈  ℝ  →  ( ( 0  −ℝ  1 )  ·  1 )  =  ( 0  −ℝ  1 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 1  ∈  ℝ  →  ( 0  −ℝ  ( ( 0  −ℝ  1 )  ·  1 ) )  =  ( 0  −ℝ  ( 0  −ℝ  1 ) ) ) | 
						
							| 17 |  | renegneg | ⊢ ( 1  ∈  ℝ  →  ( 0  −ℝ  ( 0  −ℝ  1 ) )  =  1 ) | 
						
							| 18 | 13 16 17 | 3eqtrd | ⊢ ( 1  ∈  ℝ  →  ( ( 0  −ℝ  1 )  ·  ( 0  −ℝ  1 ) )  =  1 ) | 
						
							| 19 | 2 18 | ax-mp | ⊢ ( ( 0  −ℝ  1 )  ·  ( 0  −ℝ  1 ) )  =  1 | 
						
							| 20 | 11 19 | breqtrdi | ⊢ ( 1  <  0  →  0  <  1 ) | 
						
							| 21 |  | id | ⊢ ( 0  <  1  →  0  <  1 ) | 
						
							| 22 | 20 21 | jaoi | ⊢ ( ( 1  <  0  ∨  0  <  1 )  →  0  <  1 ) | 
						
							| 23 | 5 22 | ax-mp | ⊢ 0  <  1 |