| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
2 3
|
lttri2i |
⊢ ( 1 ≠ 0 ↔ ( 1 < 0 ∨ 0 < 1 ) ) |
| 5 |
1 4
|
mpbi |
⊢ ( 1 < 0 ∨ 0 < 1 ) |
| 6 |
|
rernegcl |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ 1 ) ∈ ℝ ) |
| 7 |
2 6
|
mp1i |
⊢ ( 1 < 0 → ( 0 −ℝ 1 ) ∈ ℝ ) |
| 8 |
|
relt0neg1 |
⊢ ( 1 ∈ ℝ → ( 1 < 0 ↔ 0 < ( 0 −ℝ 1 ) ) ) |
| 9 |
2 8
|
ax-mp |
⊢ ( 1 < 0 ↔ 0 < ( 0 −ℝ 1 ) ) |
| 10 |
9
|
biimpi |
⊢ ( 1 < 0 → 0 < ( 0 −ℝ 1 ) ) |
| 11 |
7 7 10 10
|
mulgt0d |
⊢ ( 1 < 0 → 0 < ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) ) |
| 12 |
|
1red |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ ) |
| 13 |
6 12
|
remulneg2d |
⊢ ( 1 ∈ ℝ → ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) = ( 0 −ℝ ( ( 0 −ℝ 1 ) · 1 ) ) ) |
| 14 |
|
ax-1rid |
⊢ ( ( 0 −ℝ 1 ) ∈ ℝ → ( ( 0 −ℝ 1 ) · 1 ) = ( 0 −ℝ 1 ) ) |
| 15 |
6 14
|
syl |
⊢ ( 1 ∈ ℝ → ( ( 0 −ℝ 1 ) · 1 ) = ( 0 −ℝ 1 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ ( ( 0 −ℝ 1 ) · 1 ) ) = ( 0 −ℝ ( 0 −ℝ 1 ) ) ) |
| 17 |
|
renegneg |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ ( 0 −ℝ 1 ) ) = 1 ) |
| 18 |
13 16 17
|
3eqtrd |
⊢ ( 1 ∈ ℝ → ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) = 1 ) |
| 19 |
2 18
|
ax-mp |
⊢ ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) = 1 |
| 20 |
11 19
|
breqtrdi |
⊢ ( 1 < 0 → 0 < 1 ) |
| 21 |
|
id |
⊢ ( 0 < 1 → 0 < 1 ) |
| 22 |
20 21
|
jaoi |
⊢ ( ( 1 < 0 ∨ 0 < 1 ) → 0 < 1 ) |
| 23 |
5 22
|
ax-mp |
⊢ 0 < 1 |