Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
0re |
⊢ 0 ∈ ℝ |
4 |
2 3
|
lttri2i |
⊢ ( 1 ≠ 0 ↔ ( 1 < 0 ∨ 0 < 1 ) ) |
5 |
1 4
|
mpbi |
⊢ ( 1 < 0 ∨ 0 < 1 ) |
6 |
|
rernegcl |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ 1 ) ∈ ℝ ) |
7 |
2 6
|
ax-mp |
⊢ ( 0 −ℝ 1 ) ∈ ℝ |
8 |
7
|
a1i |
⊢ ( 1 < 0 → ( 0 −ℝ 1 ) ∈ ℝ ) |
9 |
|
relt0neg1 |
⊢ ( 1 ∈ ℝ → ( 1 < 0 ↔ 0 < ( 0 −ℝ 1 ) ) ) |
10 |
2 9
|
ax-mp |
⊢ ( 1 < 0 ↔ 0 < ( 0 −ℝ 1 ) ) |
11 |
10
|
biimpi |
⊢ ( 1 < 0 → 0 < ( 0 −ℝ 1 ) ) |
12 |
8 8 11 11
|
mulgt0d |
⊢ ( 1 < 0 → 0 < ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) ) |
13 |
|
resubdi |
⊢ ( ( ( 0 −ℝ 1 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) = ( ( ( 0 −ℝ 1 ) · 0 ) −ℝ ( ( 0 −ℝ 1 ) · 1 ) ) ) |
14 |
7 3 2 13
|
mp3an |
⊢ ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) = ( ( ( 0 −ℝ 1 ) · 0 ) −ℝ ( ( 0 −ℝ 1 ) · 1 ) ) |
15 |
|
remul01 |
⊢ ( ( 0 −ℝ 1 ) ∈ ℝ → ( ( 0 −ℝ 1 ) · 0 ) = 0 ) |
16 |
7 15
|
ax-mp |
⊢ ( ( 0 −ℝ 1 ) · 0 ) = 0 |
17 |
|
ax-1rid |
⊢ ( ( 0 −ℝ 1 ) ∈ ℝ → ( ( 0 −ℝ 1 ) · 1 ) = ( 0 −ℝ 1 ) ) |
18 |
7 17
|
ax-mp |
⊢ ( ( 0 −ℝ 1 ) · 1 ) = ( 0 −ℝ 1 ) |
19 |
16 18
|
oveq12i |
⊢ ( ( ( 0 −ℝ 1 ) · 0 ) −ℝ ( ( 0 −ℝ 1 ) · 1 ) ) = ( 0 −ℝ ( 0 −ℝ 1 ) ) |
20 |
|
renegneg |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ ( 0 −ℝ 1 ) ) = 1 ) |
21 |
2 20
|
ax-mp |
⊢ ( 0 −ℝ ( 0 −ℝ 1 ) ) = 1 |
22 |
14 19 21
|
3eqtri |
⊢ ( ( 0 −ℝ 1 ) · ( 0 −ℝ 1 ) ) = 1 |
23 |
12 22
|
breqtrdi |
⊢ ( 1 < 0 → 0 < 1 ) |
24 |
|
id |
⊢ ( 0 < 1 → 0 < 1 ) |
25 |
23 24
|
jaoi |
⊢ ( ( 1 < 0 ∨ 0 < 1 ) → 0 < 1 ) |
26 |
5 25
|
ax-mp |
⊢ 0 < 1 |