| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 2 |  | 1re |  |-  1 e. RR | 
						
							| 3 |  | 0re |  |-  0 e. RR | 
						
							| 4 | 2 3 | lttri2i |  |-  ( 1 =/= 0 <-> ( 1 < 0 \/ 0 < 1 ) ) | 
						
							| 5 | 1 4 | mpbi |  |-  ( 1 < 0 \/ 0 < 1 ) | 
						
							| 6 |  | rernegcl |  |-  ( 1 e. RR -> ( 0 -R 1 ) e. RR ) | 
						
							| 7 | 2 6 | mp1i |  |-  ( 1 < 0 -> ( 0 -R 1 ) e. RR ) | 
						
							| 8 |  | relt0neg1 |  |-  ( 1 e. RR -> ( 1 < 0 <-> 0 < ( 0 -R 1 ) ) ) | 
						
							| 9 | 2 8 | ax-mp |  |-  ( 1 < 0 <-> 0 < ( 0 -R 1 ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( 1 < 0 -> 0 < ( 0 -R 1 ) ) | 
						
							| 11 | 7 7 10 10 | mulgt0d |  |-  ( 1 < 0 -> 0 < ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) ) | 
						
							| 12 |  | 1red |  |-  ( 1 e. RR -> 1 e. RR ) | 
						
							| 13 | 6 12 | remulneg2d |  |-  ( 1 e. RR -> ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) = ( 0 -R ( ( 0 -R 1 ) x. 1 ) ) ) | 
						
							| 14 |  | ax-1rid |  |-  ( ( 0 -R 1 ) e. RR -> ( ( 0 -R 1 ) x. 1 ) = ( 0 -R 1 ) ) | 
						
							| 15 | 6 14 | syl |  |-  ( 1 e. RR -> ( ( 0 -R 1 ) x. 1 ) = ( 0 -R 1 ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( 1 e. RR -> ( 0 -R ( ( 0 -R 1 ) x. 1 ) ) = ( 0 -R ( 0 -R 1 ) ) ) | 
						
							| 17 |  | renegneg |  |-  ( 1 e. RR -> ( 0 -R ( 0 -R 1 ) ) = 1 ) | 
						
							| 18 | 13 16 17 | 3eqtrd |  |-  ( 1 e. RR -> ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) = 1 ) | 
						
							| 19 | 2 18 | ax-mp |  |-  ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) = 1 | 
						
							| 20 | 11 19 | breqtrdi |  |-  ( 1 < 0 -> 0 < 1 ) | 
						
							| 21 |  | id |  |-  ( 0 < 1 -> 0 < 1 ) | 
						
							| 22 | 20 21 | jaoi |  |-  ( ( 1 < 0 \/ 0 < 1 ) -> 0 < 1 ) | 
						
							| 23 | 5 22 | ax-mp |  |-  0 < 1 |