Metamath Proof Explorer


Theorem sn-reclt0d

Description: The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses sn-reclt0d.a ( 𝜑𝐴 ∈ ℝ )
sn-reclt0d.z ( 𝜑𝐴 < 0 )
Assertion sn-reclt0d ( 𝜑 → ( 1 / 𝐴 ) < 0 )

Proof

Step Hyp Ref Expression
1 sn-reclt0d.a ( 𝜑𝐴 ∈ ℝ )
2 sn-reclt0d.z ( 𝜑𝐴 < 0 )
3 2 lt0ne0d ( 𝜑𝐴 ≠ 0 )
4 1 3 sn-rereccld ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ )
5 rernegcl ( 𝐴 ∈ ℝ → ( 0 − 𝐴 ) ∈ ℝ )
6 1 5 syl ( 𝜑 → ( 0 − 𝐴 ) ∈ ℝ )
7 relt0neg1 ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < ( 0 − 𝐴 ) ) )
8 1 7 syl ( 𝜑 → ( 𝐴 < 0 ↔ 0 < ( 0 − 𝐴 ) ) )
9 2 8 mpbid ( 𝜑 → 0 < ( 0 − 𝐴 ) )
10 4 1 remulneg2d ( 𝜑 → ( ( 1 / 𝐴 ) · ( 0 − 𝐴 ) ) = ( 0 − ( ( 1 / 𝐴 ) · 𝐴 ) ) )
11 1 3 rerecid2 ( 𝜑 → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 )
12 11 oveq2d ( 𝜑 → ( 0 − ( ( 1 / 𝐴 ) · 𝐴 ) ) = ( 0 − 1 ) )
13 10 12 eqtrd ( 𝜑 → ( ( 1 / 𝐴 ) · ( 0 − 𝐴 ) ) = ( 0 − 1 ) )
14 reneg1lt0 ( 0 − 1 ) < 0
15 14 a1i ( 𝜑 → ( 0 − 1 ) < 0 )
16 13 15 eqbrtrd ( 𝜑 → ( ( 1 / 𝐴 ) · ( 0 − 𝐴 ) ) < 0 )
17 4 6 9 16 mulgt0con1d ( 𝜑 → ( 1 / 𝐴 ) < 0 )