| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-reclt0d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
sn-reclt0d.z |
⊢ ( 𝜑 → 𝐴 < 0 ) |
| 3 |
2
|
lt0ne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 4 |
1 3
|
sn-rereccld |
⊢ ( 𝜑 → ( 1 /ℝ 𝐴 ) ∈ ℝ ) |
| 5 |
|
rernegcl |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
| 7 |
|
relt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < ( 0 −ℝ 𝐴 ) ) ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ 0 < ( 0 −ℝ 𝐴 ) ) ) |
| 9 |
2 8
|
mpbid |
⊢ ( 𝜑 → 0 < ( 0 −ℝ 𝐴 ) ) |
| 10 |
4 1
|
remulneg2d |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ 𝐴 ) ) = ( 0 −ℝ ( ( 1 /ℝ 𝐴 ) · 𝐴 ) ) ) |
| 11 |
1 3
|
rerecid2 |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · 𝐴 ) = 1 ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 0 −ℝ ( ( 1 /ℝ 𝐴 ) · 𝐴 ) ) = ( 0 −ℝ 1 ) ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ 𝐴 ) ) = ( 0 −ℝ 1 ) ) |
| 14 |
|
reneg1lt0 |
⊢ ( 0 −ℝ 1 ) < 0 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 0 −ℝ 1 ) < 0 ) |
| 16 |
13 15
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ 𝐴 ) ) < 0 ) |
| 17 |
4 6 9 16
|
mulgt0con1d |
⊢ ( 𝜑 → ( 1 /ℝ 𝐴 ) < 0 ) |