| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-msqgt0d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
sn-msqgt0d.u |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
| 5 |
3 3 4 4
|
sn-mullt0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 8 |
6 6 7 7
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < ( 𝐴 · 𝐴 ) ) |
| 9 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 10 |
1 9
|
lttri2d |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
| 11 |
2 10
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
| 12 |
5 8 11
|
mpjaodan |
⊢ ( 𝜑 → 0 < ( 𝐴 · 𝐴 ) ) |