Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Independence of ax-mulcom
sn-msqgt0d
Next ⟩
sn-inelr
Metamath Proof Explorer
Ascii
Unicode
Theorem
sn-msqgt0d
Description:
A nonzero square is positive.
(Contributed by
SN
, 1-Dec-2025)
Ref
Expression
Hypotheses
sn-msqgt0d.a
⊢
φ
→
A
∈
ℝ
sn-msqgt0d.u
⊢
φ
→
A
≠
0
Assertion
sn-msqgt0d
⊢
φ
→
0
<
A
⁢
A
Proof
Step
Hyp
Ref
Expression
1
sn-msqgt0d.a
⊢
φ
→
A
∈
ℝ
2
sn-msqgt0d.u
⊢
φ
→
A
≠
0
3
1
adantr
⊢
φ
∧
A
<
0
→
A
∈
ℝ
4
simpr
⊢
φ
∧
A
<
0
→
A
<
0
5
3
3
4
4
sn-mullt0d
⊢
φ
∧
A
<
0
→
0
<
A
⁢
A
6
1
adantr
⊢
φ
∧
0
<
A
→
A
∈
ℝ
7
simpr
⊢
φ
∧
0
<
A
→
0
<
A
8
6
6
7
7
mulgt0d
⊢
φ
∧
0
<
A
→
0
<
A
⁢
A
9
0red
⊢
φ
→
0
∈
ℝ
10
1
9
lttri2d
⊢
φ
→
A
≠
0
↔
A
<
0
∨
0
<
A
11
2
10
mpbid
⊢
φ
→
A
<
0
∨
0
<
A
12
5
8
11
mpjaodan
⊢
φ
→
0
<
A
⁢
A