Metamath Proof Explorer


Theorem sn-msqgt0d

Description: A nonzero square is positive. (Contributed by SN, 1-Dec-2025)

Ref Expression
Hypotheses sn-msqgt0d.a φ A
sn-msqgt0d.u φ A 0
Assertion sn-msqgt0d φ 0 < A A

Proof

Step Hyp Ref Expression
1 sn-msqgt0d.a φ A
2 sn-msqgt0d.u φ A 0
3 1 adantr φ A < 0 A
4 simpr φ A < 0 A < 0
5 3 3 4 4 sn-mullt0d φ A < 0 0 < A A
6 1 adantr φ 0 < A A
7 simpr φ 0 < A 0 < A
8 6 6 7 7 mulgt0d φ 0 < A 0 < A A
9 0red φ 0
10 1 9 lttri2d φ A 0 A < 0 0 < A
11 2 10 mpbid φ A < 0 0 < A
12 5 8 11 mpjaodan φ 0 < A A