Description: The closed sets of the topology { (/) } . (Contributed by FL, 5-Jan-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sn0cld | |- ( Clsd ` { (/) } ) = { (/) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | discld | |- ( (/) e. _V -> ( Clsd ` ~P (/) ) = ~P (/) ) |
|
| 3 | 1 2 | ax-mp | |- ( Clsd ` ~P (/) ) = ~P (/) |
| 4 | pw0 | |- ~P (/) = { (/) } |
|
| 5 | 4 | fveq2i | |- ( Clsd ` ~P (/) ) = ( Clsd ` { (/) } ) |
| 6 | 3 5 4 | 3eqtr3i | |- ( Clsd ` { (/) } ) = { (/) } |