Step |
Hyp |
Ref |
Expression |
1 |
|
indistop |
|- { (/) , A } e. Top |
2 |
|
indisuni |
|- ( _I ` A ) = U. { (/) , A } |
3 |
2
|
iscld |
|- ( { (/) , A } e. Top -> ( x e. ( Clsd ` { (/) , A } ) <-> ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) ) ) |
4 |
1 3
|
ax-mp |
|- ( x e. ( Clsd ` { (/) , A } ) <-> ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) ) |
5 |
|
simpl |
|- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> x C_ ( _I ` A ) ) |
6 |
|
dfss4 |
|- ( x C_ ( _I ` A ) <-> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = x ) |
7 |
5 6
|
sylib |
|- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = x ) |
8 |
|
simpr |
|- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ x ) e. { (/) , A } ) |
9 |
|
indislem |
|- { (/) , ( _I ` A ) } = { (/) , A } |
10 |
8 9
|
eleqtrrdi |
|- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ x ) e. { (/) , ( _I ` A ) } ) |
11 |
|
elpri |
|- ( ( ( _I ` A ) \ x ) e. { (/) , ( _I ` A ) } -> ( ( ( _I ` A ) \ x ) = (/) \/ ( ( _I ` A ) \ x ) = ( _I ` A ) ) ) |
12 |
|
difeq2 |
|- ( ( ( _I ` A ) \ x ) = (/) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = ( ( _I ` A ) \ (/) ) ) |
13 |
|
dif0 |
|- ( ( _I ` A ) \ (/) ) = ( _I ` A ) |
14 |
12 13
|
eqtrdi |
|- ( ( ( _I ` A ) \ x ) = (/) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = ( _I ` A ) ) |
15 |
|
fvex |
|- ( _I ` A ) e. _V |
16 |
15
|
prid2 |
|- ( _I ` A ) e. { (/) , ( _I ` A ) } |
17 |
16 9
|
eleqtri |
|- ( _I ` A ) e. { (/) , A } |
18 |
14 17
|
eqeltrdi |
|- ( ( ( _I ` A ) \ x ) = (/) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
19 |
|
difeq2 |
|- ( ( ( _I ` A ) \ x ) = ( _I ` A ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = ( ( _I ` A ) \ ( _I ` A ) ) ) |
20 |
|
difid |
|- ( ( _I ` A ) \ ( _I ` A ) ) = (/) |
21 |
19 20
|
eqtrdi |
|- ( ( ( _I ` A ) \ x ) = ( _I ` A ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = (/) ) |
22 |
|
0ex |
|- (/) e. _V |
23 |
22
|
prid1 |
|- (/) e. { (/) , A } |
24 |
21 23
|
eqeltrdi |
|- ( ( ( _I ` A ) \ x ) = ( _I ` A ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
25 |
18 24
|
jaoi |
|- ( ( ( ( _I ` A ) \ x ) = (/) \/ ( ( _I ` A ) \ x ) = ( _I ` A ) ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
26 |
10 11 25
|
3syl |
|- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
27 |
7 26
|
eqeltrrd |
|- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> x e. { (/) , A } ) |
28 |
4 27
|
sylbi |
|- ( x e. ( Clsd ` { (/) , A } ) -> x e. { (/) , A } ) |
29 |
28
|
ssriv |
|- ( Clsd ` { (/) , A } ) C_ { (/) , A } |
30 |
|
0cld |
|- ( { (/) , A } e. Top -> (/) e. ( Clsd ` { (/) , A } ) ) |
31 |
1 30
|
ax-mp |
|- (/) e. ( Clsd ` { (/) , A } ) |
32 |
2
|
topcld |
|- ( { (/) , A } e. Top -> ( _I ` A ) e. ( Clsd ` { (/) , A } ) ) |
33 |
1 32
|
ax-mp |
|- ( _I ` A ) e. ( Clsd ` { (/) , A } ) |
34 |
|
prssi |
|- ( ( (/) e. ( Clsd ` { (/) , A } ) /\ ( _I ` A ) e. ( Clsd ` { (/) , A } ) ) -> { (/) , ( _I ` A ) } C_ ( Clsd ` { (/) , A } ) ) |
35 |
31 33 34
|
mp2an |
|- { (/) , ( _I ` A ) } C_ ( Clsd ` { (/) , A } ) |
36 |
9 35
|
eqsstrri |
|- { (/) , A } C_ ( Clsd ` { (/) , A } ) |
37 |
29 36
|
eqssi |
|- ( Clsd ` { (/) , A } ) = { (/) , A } |