Metamath Proof Explorer


Theorem indiscld

Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indiscld ( Clsd ‘ { ∅ , 𝐴 } ) = { ∅ , 𝐴 }

Proof

Step Hyp Ref Expression
1 indistop { ∅ , 𝐴 } ∈ Top
2 indisuni ( I ‘ 𝐴 ) = { ∅ , 𝐴 }
3 2 iscld ( { ∅ , 𝐴 } ∈ Top → ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ↔ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) ) )
4 1 3 ax-mp ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ↔ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) )
5 simpl ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → 𝑥 ⊆ ( I ‘ 𝐴 ) )
6 dfss4 ( 𝑥 ⊆ ( I ‘ 𝐴 ) ↔ ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = 𝑥 )
7 5 6 sylib ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = 𝑥 )
8 simpr ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } )
9 indislem { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 }
10 8 9 eleqtrrdi ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , ( I ‘ 𝐴 ) } )
11 elpri ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , ( I ‘ 𝐴 ) } → ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ ∨ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) ) )
12 difeq2 ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( ( I ‘ 𝐴 ) ∖ ∅ ) )
13 dif0 ( ( I ‘ 𝐴 ) ∖ ∅ ) = ( I ‘ 𝐴 )
14 12 13 eqtrdi ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( I ‘ 𝐴 ) )
15 fvex ( I ‘ 𝐴 ) ∈ V
16 15 prid2 ( I ‘ 𝐴 ) ∈ { ∅ , ( I ‘ 𝐴 ) }
17 16 9 eleqtri ( I ‘ 𝐴 ) ∈ { ∅ , 𝐴 }
18 14 17 eqeltrdi ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } )
19 difeq2 ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( ( I ‘ 𝐴 ) ∖ ( I ‘ 𝐴 ) ) )
20 difid ( ( I ‘ 𝐴 ) ∖ ( I ‘ 𝐴 ) ) = ∅
21 19 20 eqtrdi ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ∅ )
22 0ex ∅ ∈ V
23 22 prid1 ∅ ∈ { ∅ , 𝐴 }
24 21 23 eqeltrdi ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } )
25 18 24 jaoi ( ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ ∨ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } )
26 10 11 25 3syl ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } )
27 7 26 eqeltrrd ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → 𝑥 ∈ { ∅ , 𝐴 } )
28 4 27 sylbi ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) → 𝑥 ∈ { ∅ , 𝐴 } )
29 28 ssriv ( Clsd ‘ { ∅ , 𝐴 } ) ⊆ { ∅ , 𝐴 }
30 0cld ( { ∅ , 𝐴 } ∈ Top → ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) )
31 1 30 ax-mp ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } )
32 2 topcld ( { ∅ , 𝐴 } ∈ Top → ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) )
33 1 32 ax-mp ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } )
34 prssi ( ( ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ∧ ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) → { ∅ , ( I ‘ 𝐴 ) } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) )
35 31 33 34 mp2an { ∅ , ( I ‘ 𝐴 ) } ⊆ ( Clsd ‘ { ∅ , 𝐴 } )
36 9 35 eqsstrri { ∅ , 𝐴 } ⊆ ( Clsd ‘ { ∅ , 𝐴 } )
37 29 36 eqssi ( Clsd ‘ { ∅ , 𝐴 } ) = { ∅ , 𝐴 }