| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indistop |
⊢ { ∅ , 𝐴 } ∈ Top |
| 2 |
|
indisuni |
⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } |
| 3 |
2
|
iscld |
⊢ ( { ∅ , 𝐴 } ∈ Top → ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ↔ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ↔ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → 𝑥 ⊆ ( I ‘ 𝐴 ) ) |
| 6 |
|
dfss4 |
⊢ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ↔ ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = 𝑥 ) |
| 7 |
5 6
|
sylib |
⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = 𝑥 ) |
| 8 |
|
simpr |
⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) |
| 9 |
|
indislem |
⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |
| 10 |
8 9
|
eleqtrrdi |
⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , ( I ‘ 𝐴 ) } ) |
| 11 |
|
elpri |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , ( I ‘ 𝐴 ) } → ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ ∨ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) ) ) |
| 12 |
|
difeq2 |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( ( I ‘ 𝐴 ) ∖ ∅ ) ) |
| 13 |
|
dif0 |
⊢ ( ( I ‘ 𝐴 ) ∖ ∅ ) = ( I ‘ 𝐴 ) |
| 14 |
12 13
|
eqtrdi |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( I ‘ 𝐴 ) ) |
| 15 |
|
fvex |
⊢ ( I ‘ 𝐴 ) ∈ V |
| 16 |
15
|
prid2 |
⊢ ( I ‘ 𝐴 ) ∈ { ∅ , ( I ‘ 𝐴 ) } |
| 17 |
16 9
|
eleqtri |
⊢ ( I ‘ 𝐴 ) ∈ { ∅ , 𝐴 } |
| 18 |
14 17
|
eqeltrdi |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 19 |
|
difeq2 |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( ( I ‘ 𝐴 ) ∖ ( I ‘ 𝐴 ) ) ) |
| 20 |
|
difid |
⊢ ( ( I ‘ 𝐴 ) ∖ ( I ‘ 𝐴 ) ) = ∅ |
| 21 |
19 20
|
eqtrdi |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ∅ ) |
| 22 |
|
0ex |
⊢ ∅ ∈ V |
| 23 |
22
|
prid1 |
⊢ ∅ ∈ { ∅ , 𝐴 } |
| 24 |
21 23
|
eqeltrdi |
⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 25 |
18 24
|
jaoi |
⊢ ( ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ ∨ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 26 |
10 11 25
|
3syl |
⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 27 |
7 26
|
eqeltrrd |
⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
| 28 |
4 27
|
sylbi |
⊢ ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
| 29 |
28
|
ssriv |
⊢ ( Clsd ‘ { ∅ , 𝐴 } ) ⊆ { ∅ , 𝐴 } |
| 30 |
|
0cld |
⊢ ( { ∅ , 𝐴 } ∈ Top → ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) |
| 31 |
1 30
|
ax-mp |
⊢ ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 32 |
2
|
topcld |
⊢ ( { ∅ , 𝐴 } ∈ Top → ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) |
| 33 |
1 32
|
ax-mp |
⊢ ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 34 |
|
prssi |
⊢ ( ( ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ∧ ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) → { ∅ , ( I ‘ 𝐴 ) } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) ) |
| 35 |
31 33 34
|
mp2an |
⊢ { ∅ , ( I ‘ 𝐴 ) } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 36 |
9 35
|
eqsstrri |
⊢ { ∅ , 𝐴 } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 37 |
29 36
|
eqssi |
⊢ ( Clsd ‘ { ∅ , 𝐴 } ) = { ∅ , 𝐴 } |