| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isspth |  |-  ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) | 
						
							| 2 |  | trliswlk |  |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 | 3 | wlkp |  |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) | 
						
							| 5 |  | df-f1 |  |-  ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) | 
						
							| 6 | 5 | simplbi2 |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) ) | 
						
							| 7 | 2 4 6 | 3syl |  |-  ( F ( Trails ` G ) P -> ( Fun `' P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( F ( Trails ` G ) P /\ Fun `' P ) -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) | 
						
							| 9 | 1 8 | sylbi |  |-  ( F ( SPaths ` G ) P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |