| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) | 
						
							| 2 |  | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 3 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 | 3 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 |  | df-f1 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 )  ↔  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ 𝑃 ) ) | 
						
							| 6 | 5 | simplbi2 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( Fun  ◡ 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 7 | 2 4 6 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  ( Fun  ◡ 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) | 
						
							| 9 | 1 8 | sylbi | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |