Metamath Proof Explorer


Theorem spthdifv

Description: The vertices of a simple path are distinct, so the vertex function is one-to-one. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 5-Jun-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion spthdifv FSPathsGPP:0F1-1VtxG

Proof

Step Hyp Ref Expression
1 isspth FSPathsGPFTrailsGPFunP-1
2 trliswlk FTrailsGPFWalksGP
3 eqid VtxG=VtxG
4 3 wlkp FWalksGPP:0FVtxG
5 df-f1 P:0F1-1VtxGP:0FVtxGFunP-1
6 5 simplbi2 P:0FVtxGFunP-1P:0F1-1VtxG
7 2 4 6 3syl FTrailsGPFunP-1P:0F1-1VtxG
8 7 imp FTrailsGPFunP-1P:0F1-1VtxG
9 1 8 sylbi FSPathsGPP:0F1-1VtxG