Metamath Proof Explorer


Theorem sq45

Description: 45 squared is 2025. (Contributed by SN, 30-Mar-2025)

Ref Expression
Assertion sq45
|- ( ; 4 5 ^ 2 ) = ; ; ; 2 0 2 5

Proof

Step Hyp Ref Expression
1 4nn0
 |-  4 e. NN0
2 5nn0
 |-  5 e. NN0
3 1 2 deccl
 |-  ; 4 5 e. NN0
4 3 nn0cni
 |-  ; 4 5 e. CC
5 4 sqvali
 |-  ( ; 4 5 ^ 2 ) = ( ; 4 5 x. ; 4 5 )
6 4p1e5
 |-  ( 4 + 1 ) = 5
7 4t5e20
 |-  ( 4 x. 5 ) = ; 2 0
8 1 6 7 sqn5ii
 |-  ( ; 4 5 x. ; 4 5 ) = ; ; ; 2 0 2 5
9 5 8 eqtri
 |-  ( ; 4 5 ^ 2 ) = ; ; ; 2 0 2 5