Metamath Proof Explorer


Theorem sq45

Description: 45 squared is 2025. (Contributed by SN, 30-Mar-2025)

Ref Expression
Assertion sq45 ( 4 5 ↑ 2 ) = 2 0 2 5

Proof

Step Hyp Ref Expression
1 4nn0 4 ∈ ℕ0
2 5nn0 5 ∈ ℕ0
3 1 2 deccl 4 5 ∈ ℕ0
4 3 nn0cni 4 5 ∈ ℂ
5 4 sqvali ( 4 5 ↑ 2 ) = ( 4 5 · 4 5 )
6 4p1e5 ( 4 + 1 ) = 5
7 4t5e20 ( 4 · 5 ) = 2 0
8 1 6 7 sqn5ii ( 4 5 · 4 5 ) = 2 0 2 5
9 5 8 eqtri ( 4 5 ↑ 2 ) = 2 0 2 5