| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 2 |
1
|
adantr |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. RR ) |
| 3 |
|
absresq |
|- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
| 4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
| 5 |
2
|
recnd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. CC ) |
| 6 |
5
|
abscld |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. RR ) |
| 7 |
6
|
recnd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. CC ) |
| 8 |
7
|
sqvald |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 9 |
4 8
|
eqtr3d |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 10 |
|
simpr |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. Prime ) |
| 11 |
9 10
|
eqeltrrd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
| 12 |
|
nn0abscl |
|- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
| 13 |
12
|
adantr |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. NN0 ) |
| 14 |
13
|
nn0zd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ZZ ) |
| 15 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 16 |
|
prmuz2 |
|- ( ( A ^ 2 ) e. Prime -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) |
| 17 |
16
|
adantl |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) |
| 18 |
|
eluz2gt1 |
|- ( ( A ^ 2 ) e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) |
| 19 |
17 18
|
syl |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( A ^ 2 ) ) |
| 20 |
19 4
|
breqtrrd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( ( abs ` A ) ^ 2 ) ) |
| 21 |
15 20
|
eqbrtrid |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) |
| 22 |
5
|
absge0d |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 0 <_ ( abs ` A ) ) |
| 23 |
|
1re |
|- 1 e. RR |
| 24 |
|
0le1 |
|- 0 <_ 1 |
| 25 |
|
lt2sq |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
| 26 |
23 24 25
|
mpanl12 |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
| 27 |
6 22 26
|
syl2anc |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
| 28 |
21 27
|
mpbird |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( abs ` A ) ) |
| 29 |
|
eluz2b1 |
|- ( ( abs ` A ) e. ( ZZ>= ` 2 ) <-> ( ( abs ` A ) e. ZZ /\ 1 < ( abs ` A ) ) ) |
| 30 |
14 28 29
|
sylanbrc |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ( ZZ>= ` 2 ) ) |
| 31 |
|
nprm |
|- ( ( ( abs ` A ) e. ( ZZ>= ` 2 ) /\ ( abs ` A ) e. ( ZZ>= ` 2 ) ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
| 32 |
30 30 31
|
syl2anc |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
| 33 |
11 32
|
pm2.65da |
|- ( A e. ZZ -> -. ( A ^ 2 ) e. Prime ) |