Metamath Proof Explorer


Theorem sqrlem3

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1
|- S = { x e. RR+ | ( x ^ 2 ) <_ A }
sqrlem1.2
|- B = sup ( S , RR , < )
Assertion sqrlem3
|- ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. z e. RR A. y e. S y <_ z ) )

Proof

Step Hyp Ref Expression
1 sqrlem1.1
 |-  S = { x e. RR+ | ( x ^ 2 ) <_ A }
2 sqrlem1.2
 |-  B = sup ( S , RR , < )
3 ssrab2
 |-  { x e. RR+ | ( x ^ 2 ) <_ A } C_ RR+
4 rpssre
 |-  RR+ C_ RR
5 3 4 sstri
 |-  { x e. RR+ | ( x ^ 2 ) <_ A } C_ RR
6 1 5 eqsstri
 |-  S C_ RR
7 6 a1i
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> S C_ RR )
8 1 2 sqrlem2
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. S )
9 8 ne0d
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> S =/= (/) )
10 1re
 |-  1 e. RR
11 1 2 sqrlem1
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> A. y e. S y <_ 1 )
12 brralrspcev
 |-  ( ( 1 e. RR /\ A. y e. S y <_ 1 ) -> E. z e. RR A. y e. S y <_ z )
13 10 11 12 sylancr
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> E. z e. RR A. y e. S y <_ z )
14 7 9 13 3jca
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. z e. RR A. y e. S y <_ z ) )