| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limom |  |-  Lim _om | 
						
							| 2 |  | ssel |  |-  ( A C_ { x e. On | -. Lim x } -> ( _om e. A -> _om e. { x e. On | -. Lim x } ) ) | 
						
							| 3 |  | limeq |  |-  ( x = _om -> ( Lim x <-> Lim _om ) ) | 
						
							| 4 | 3 | notbid |  |-  ( x = _om -> ( -. Lim x <-> -. Lim _om ) ) | 
						
							| 5 | 4 | elrab |  |-  ( _om e. { x e. On | -. Lim x } <-> ( _om e. On /\ -. Lim _om ) ) | 
						
							| 6 | 5 | simprbi |  |-  ( _om e. { x e. On | -. Lim x } -> -. Lim _om ) | 
						
							| 7 | 2 6 | syl6 |  |-  ( A C_ { x e. On | -. Lim x } -> ( _om e. A -> -. Lim _om ) ) | 
						
							| 8 | 1 7 | mt2i |  |-  ( A C_ { x e. On | -. Lim x } -> -. _om e. A ) | 
						
							| 9 | 8 | adantl |  |-  ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> -. _om e. A ) | 
						
							| 10 |  | ordom |  |-  Ord _om | 
						
							| 11 |  | ordtri1 |  |-  ( ( Ord A /\ Ord _om ) -> ( A C_ _om <-> -. _om e. A ) ) | 
						
							| 12 | 10 11 | mpan2 |  |-  ( Ord A -> ( A C_ _om <-> -. _om e. A ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> ( A C_ _om <-> -. _om e. A ) ) | 
						
							| 14 | 9 13 | mpbird |  |-  ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> A C_ _om ) |