Step |
Hyp |
Ref |
Expression |
1 |
|
structvtxvallem.s |
|- S e. NN |
2 |
|
structvtxvallem.b |
|- ( Base ` ndx ) < S |
3 |
|
structvtxvallem.g |
|- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
4 |
3 2 1
|
2strstr1 |
|- G Struct <. ( Base ` ndx ) , S >. |
5 |
4
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> G Struct <. ( Base ` ndx ) , S >. ) |
6 |
1 2 3
|
structvtxvallem |
|- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |
7 |
|
simpl |
|- ( ( V e. X /\ E e. Y ) -> V e. X ) |
8 |
|
opex |
|- <. ( Base ` ndx ) , V >. e. _V |
9 |
8
|
prid1 |
|- <. ( Base ` ndx ) , V >. e. { <. ( Base ` ndx ) , V >. , <. S , E >. } |
10 |
9 3
|
eleqtrri |
|- <. ( Base ` ndx ) , V >. e. G |
11 |
10
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> <. ( Base ` ndx ) , V >. e. G ) |
12 |
5 6 7 11
|
basvtxval |
|- ( ( V e. X /\ E e. Y ) -> ( Vtx ` G ) = V ) |