Metamath Proof Explorer


Theorem structvtxval

Description: The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b ( Base ‘ ndx ) < 𝑆
structvtxvallem.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ }
Assertion structvtxval ( ( 𝑉𝑋𝐸𝑌 ) → ( Vtx ‘ 𝐺 ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 structvtxvallem.s 𝑆 ∈ ℕ
2 structvtxvallem.b ( Base ‘ ndx ) < 𝑆
3 structvtxvallem.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ }
4 3 2 1 2strstr1 𝐺 Struct ⟨ ( Base ‘ ndx ) , 𝑆
5 4 a1i ( ( 𝑉𝑋𝐸𝑌 ) → 𝐺 Struct ⟨ ( Base ‘ ndx ) , 𝑆 ⟩ )
6 1 2 3 structvtxvallem ( ( 𝑉𝑋𝐸𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) )
7 simpl ( ( 𝑉𝑋𝐸𝑌 ) → 𝑉𝑋 )
8 opex ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ ∈ V
9 8 prid1 ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ ∈ { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ }
10 9 3 eleqtrri ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ ∈ 𝐺
11 10 a1i ( ( 𝑉𝑋𝐸𝑌 ) → ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ ∈ 𝐺 )
12 5 6 7 11 basvtxval ( ( 𝑉𝑋𝐸𝑌 ) → ( Vtx ‘ 𝐺 ) = 𝑉 )