| Step |
Hyp |
Ref |
Expression |
| 1 |
|
structvtxvallem.s |
⊢ 𝑆 ∈ ℕ |
| 2 |
|
structvtxvallem.b |
⊢ ( Base ‘ ndx ) < 𝑆 |
| 3 |
|
structvtxvallem.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } |
| 4 |
|
fvexd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Base ‘ ndx ) ∈ V ) |
| 5 |
1
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑆 ∈ ℕ ) |
| 6 |
|
simpl |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑉 ∈ 𝑋 ) |
| 7 |
|
simpr |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ∈ 𝑌 ) |
| 8 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ∈ V |
| 9 |
3 8
|
eqeltri |
⊢ 𝐺 ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ∈ V ) |
| 11 |
|
basendxnn |
⊢ ( Base ‘ ndx ) ∈ ℕ |
| 12 |
11
|
nnrei |
⊢ ( Base ‘ ndx ) ∈ ℝ |
| 13 |
12 2
|
ltneii |
⊢ ( Base ‘ ndx ) ≠ 𝑆 |
| 14 |
13
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Base ‘ ndx ) ≠ 𝑆 ) |
| 15 |
3
|
eqimss2i |
⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ⊆ 𝐺 |
| 16 |
15
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ⊆ 𝐺 ) |
| 17 |
4 5 6 7 10 14 16
|
hashdmpropge2 |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |