Metamath Proof Explorer


Theorem hashdmpropge2

Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021)

Ref Expression
Hypotheses hashdmpropge2.a ( 𝜑𝐴𝑉 )
hashdmpropge2.b ( 𝜑𝐵𝑊 )
hashdmpropge2.c ( 𝜑𝐶𝑋 )
hashdmpropge2.d ( 𝜑𝐷𝑌 )
hashdmpropge2.f ( 𝜑𝐹𝑍 )
hashdmpropge2.n ( 𝜑𝐴𝐵 )
hashdmpropge2.s ( 𝜑 → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ⊆ 𝐹 )
Assertion hashdmpropge2 ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐹 ) )

Proof

Step Hyp Ref Expression
1 hashdmpropge2.a ( 𝜑𝐴𝑉 )
2 hashdmpropge2.b ( 𝜑𝐵𝑊 )
3 hashdmpropge2.c ( 𝜑𝐶𝑋 )
4 hashdmpropge2.d ( 𝜑𝐷𝑌 )
5 hashdmpropge2.f ( 𝜑𝐹𝑍 )
6 hashdmpropge2.n ( 𝜑𝐴𝐵 )
7 hashdmpropge2.s ( 𝜑 → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ⊆ 𝐹 )
8 5 dmexd ( 𝜑 → dom 𝐹 ∈ V )
9 dmpropg ( ( 𝐶𝑋𝐷𝑌 ) → dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐴 , 𝐵 } )
10 3 4 9 syl2anc ( 𝜑 → dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐴 , 𝐵 } )
11 dmss ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ⊆ 𝐹 → dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ⊆ dom 𝐹 )
12 7 11 syl ( 𝜑 → dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ⊆ dom 𝐹 )
13 10 12 eqsstrrd ( 𝜑 → { 𝐴 , 𝐵 } ⊆ dom 𝐹 )
14 prssg ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹 ) ↔ { 𝐴 , 𝐵 } ⊆ dom 𝐹 ) )
15 1 2 14 syl2anc ( 𝜑 → ( ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹 ) ↔ { 𝐴 , 𝐵 } ⊆ dom 𝐹 ) )
16 neeq1 ( 𝑎 = 𝐴 → ( 𝑎𝑏𝐴𝑏 ) )
17 neeq2 ( 𝑏 = 𝐵 → ( 𝐴𝑏𝐴𝐵 ) )
18 16 17 rspc2ev ( ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹𝐴𝐵 ) → ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 )
19 18 3expa ( ( ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹 ) ∧ 𝐴𝐵 ) → ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 )
20 19 expcom ( 𝐴𝐵 → ( ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹 ) → ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 ) )
21 6 20 syl ( 𝜑 → ( ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹 ) → ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 ) )
22 15 21 sylbird ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ dom 𝐹 → ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 ) )
23 13 22 mpd ( 𝜑 → ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 )
24 hashge2el2difr ( ( dom 𝐹 ∈ V ∧ ∃ 𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏 ) → 2 ≤ ( ♯ ‘ dom 𝐹 ) )
25 8 23 24 syl2anc ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐹 ) )