Metamath Proof Explorer


Theorem structvtxvallem

Description: Lemma for structvtxval and structiedg0val . (Contributed by AV, 23-Sep-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s S
structvtxvallem.b Basendx<S
structvtxvallem.g G=BasendxVSE
Assertion structvtxvallem VXEY2domG

Proof

Step Hyp Ref Expression
1 structvtxvallem.s S
2 structvtxvallem.b Basendx<S
3 structvtxvallem.g G=BasendxVSE
4 fvexd VXEYBasendxV
5 1 a1i VXEYS
6 simpl VXEYVX
7 simpr VXEYEY
8 prex BasendxVSEV
9 3 8 eqeltri GV
10 9 a1i VXEYGV
11 basendxnn Basendx
12 11 nnrei Basendx
13 12 2 ltneii BasendxS
14 13 a1i VXEYBasendxS
15 3 eqimss2i BasendxVSEG
16 15 a1i VXEYBasendxVSEG
17 4 5 6 7 10 14 16 hashdmpropge2 VXEY2domG