Metamath Proof Explorer


Theorem structvtxval

Description: The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s S
structvtxvallem.b Basendx<S
structvtxvallem.g G=BasendxVSE
Assertion structvtxval VXEYVtxG=V

Proof

Step Hyp Ref Expression
1 structvtxvallem.s S
2 structvtxvallem.b Basendx<S
3 structvtxvallem.g G=BasendxVSE
4 3 2 1 2strstr1 GStructBasendxS
5 4 a1i VXEYGStructBasendxS
6 1 2 3 structvtxvallem VXEY2domG
7 simpl VXEYVX
8 opex BasendxVV
9 8 prid1 BasendxVBasendxVSE
10 9 3 eleqtrri BasendxVG
11 10 a1i VXEYBasendxVG
12 5 6 7 11 basvtxval VXEYVtxG=V