| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssfi |
|- ( ( B e. Fin /\ A C_ B ) -> A e. Fin ) |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
fsumconst |
|- ( ( A e. Fin /\ 1 e. CC ) -> sum_ k e. A 1 = ( ( # ` A ) x. 1 ) ) |
| 4 |
1 2 3
|
sylancl |
|- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. A 1 = ( ( # ` A ) x. 1 ) ) |
| 5 |
|
simpr |
|- ( ( B e. Fin /\ A C_ B ) -> A C_ B ) |
| 6 |
2
|
rgenw |
|- A. k e. A 1 e. CC |
| 7 |
6
|
a1i |
|- ( ( B e. Fin /\ A C_ B ) -> A. k e. A 1 e. CC ) |
| 8 |
|
animorlr |
|- ( ( B e. Fin /\ A C_ B ) -> ( B C_ ( ZZ>= ` C ) \/ B e. Fin ) ) |
| 9 |
|
sumss2 |
|- ( ( ( A C_ B /\ A. k e. A 1 e. CC ) /\ ( B C_ ( ZZ>= ` C ) \/ B e. Fin ) ) -> sum_ k e. A 1 = sum_ k e. B if ( k e. A , 1 , 0 ) ) |
| 10 |
5 7 8 9
|
syl21anc |
|- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. A 1 = sum_ k e. B if ( k e. A , 1 , 0 ) ) |
| 11 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 12 |
1 11
|
syl |
|- ( ( B e. Fin /\ A C_ B ) -> ( # ` A ) e. NN0 ) |
| 13 |
12
|
nn0cnd |
|- ( ( B e. Fin /\ A C_ B ) -> ( # ` A ) e. CC ) |
| 14 |
13
|
mulridd |
|- ( ( B e. Fin /\ A C_ B ) -> ( ( # ` A ) x. 1 ) = ( # ` A ) ) |
| 15 |
4 10 14
|
3eqtr3d |
|- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. B if ( k e. A , 1 , 0 ) = ( # ` A ) ) |