| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 2 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 3 |
|
peano2z |
|- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
| 4 |
3
|
adantr |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M + 1 ) e. ZZ ) |
| 5 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ ( M + 1 ) e. ZZ ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) / N ) e. ZZ ) ) |
| 6 |
1 2 4 5
|
syl2an23an |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) / N ) e. ZZ ) ) |
| 7 |
6
|
biimpa |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( M + 1 ) / N ) e. ZZ ) |
| 8 |
|
flid |
|- ( ( ( M + 1 ) / N ) e. ZZ -> ( |_ ` ( ( M + 1 ) / N ) ) = ( ( M + 1 ) / N ) ) |
| 9 |
7 8
|
syl |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( M + 1 ) / N ) ) = ( ( M + 1 ) / N ) ) |
| 10 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 11 |
10
|
nn0red |
|- ( N e. NN -> ( N - 1 ) e. RR ) |
| 12 |
10
|
nn0ge0d |
|- ( N e. NN -> 0 <_ ( N - 1 ) ) |
| 13 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 14 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 15 |
|
divge0 |
|- ( ( ( ( N - 1 ) e. RR /\ 0 <_ ( N - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( N - 1 ) / N ) ) |
| 16 |
11 12 13 14 15
|
syl22anc |
|- ( N e. NN -> 0 <_ ( ( N - 1 ) / N ) ) |
| 17 |
16
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> 0 <_ ( ( N - 1 ) / N ) ) |
| 18 |
13
|
ltm1d |
|- ( N e. NN -> ( N - 1 ) < N ) |
| 19 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 20 |
19
|
mulridd |
|- ( N e. NN -> ( N x. 1 ) = N ) |
| 21 |
18 20
|
breqtrrd |
|- ( N e. NN -> ( N - 1 ) < ( N x. 1 ) ) |
| 22 |
|
1re |
|- 1 e. RR |
| 23 |
22
|
a1i |
|- ( N e. NN -> 1 e. RR ) |
| 24 |
|
ltdivmul |
|- ( ( ( N - 1 ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( ( N - 1 ) / N ) < 1 <-> ( N - 1 ) < ( N x. 1 ) ) ) |
| 25 |
11 23 13 14 24
|
syl112anc |
|- ( N e. NN -> ( ( ( N - 1 ) / N ) < 1 <-> ( N - 1 ) < ( N x. 1 ) ) ) |
| 26 |
21 25
|
mpbird |
|- ( N e. NN -> ( ( N - 1 ) / N ) < 1 ) |
| 27 |
26
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( N - 1 ) / N ) < 1 ) |
| 28 |
|
nndivre |
|- ( ( ( N - 1 ) e. RR /\ N e. NN ) -> ( ( N - 1 ) / N ) e. RR ) |
| 29 |
11 28
|
mpancom |
|- ( N e. NN -> ( ( N - 1 ) / N ) e. RR ) |
| 30 |
29
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( N - 1 ) / N ) e. RR ) |
| 31 |
|
flbi2 |
|- ( ( ( ( M + 1 ) / N ) e. ZZ /\ ( ( N - 1 ) / N ) e. RR ) -> ( ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( ( M + 1 ) / N ) <-> ( 0 <_ ( ( N - 1 ) / N ) /\ ( ( N - 1 ) / N ) < 1 ) ) ) |
| 32 |
7 30 31
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( ( M + 1 ) / N ) <-> ( 0 <_ ( ( N - 1 ) / N ) /\ ( ( N - 1 ) / N ) < 1 ) ) ) |
| 33 |
17 27 32
|
mpbir2and |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( ( M + 1 ) / N ) ) |
| 34 |
9 33
|
eqtr4d |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) ) |
| 35 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 36 |
35
|
adantr |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
| 37 |
|
ax-1cn |
|- 1 e. CC |
| 38 |
37
|
a1i |
|- ( ( M e. ZZ /\ N e. NN ) -> 1 e. CC ) |
| 39 |
19
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
| 40 |
36 38 39
|
ppncand |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) + ( N - 1 ) ) = ( M + N ) ) |
| 41 |
40
|
oveq1d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) + ( N - 1 ) ) / N ) = ( ( M + N ) / N ) ) |
| 42 |
4
|
zcnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M + 1 ) e. CC ) |
| 43 |
|
subcl |
|- ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) |
| 44 |
19 37 43
|
sylancl |
|- ( N e. NN -> ( N - 1 ) e. CC ) |
| 45 |
44
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N - 1 ) e. CC ) |
| 46 |
2
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N =/= 0 ) |
| 47 |
42 45 39 46
|
divdird |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) + ( N - 1 ) ) / N ) = ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) |
| 48 |
41 47
|
eqtr3d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + N ) / N ) = ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) |
| 49 |
36 39 39 46
|
divdird |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + N ) / N ) = ( ( M / N ) + ( N / N ) ) ) |
| 50 |
48 49
|
eqtr3d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) = ( ( M / N ) + ( N / N ) ) ) |
| 51 |
39 46
|
dividd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N / N ) = 1 ) |
| 52 |
51
|
oveq2d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) + ( N / N ) ) = ( ( M / N ) + 1 ) ) |
| 53 |
50 52
|
eqtrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) = ( ( M / N ) + 1 ) ) |
| 54 |
53
|
fveq2d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( |_ ` ( ( M / N ) + 1 ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( |_ ` ( ( M / N ) + 1 ) ) ) |
| 56 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 57 |
|
nndivre |
|- ( ( M e. RR /\ N e. NN ) -> ( M / N ) e. RR ) |
| 58 |
56 57
|
sylan |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. RR ) |
| 59 |
|
1z |
|- 1 e. ZZ |
| 60 |
|
fladdz |
|- ( ( ( M / N ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( M / N ) + 1 ) ) = ( ( |_ ` ( M / N ) ) + 1 ) ) |
| 61 |
58 59 60
|
sylancl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( M / N ) + 1 ) ) = ( ( |_ ` ( M / N ) ) + 1 ) ) |
| 62 |
61
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( M / N ) + 1 ) ) = ( ( |_ ` ( M / N ) ) + 1 ) ) |
| 63 |
34 55 62
|
3eqtrrd |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( M / N ) ) + 1 ) = ( |_ ` ( ( M + 1 ) / N ) ) ) |
| 64 |
|
zre |
|- ( ( M + 1 ) e. ZZ -> ( M + 1 ) e. RR ) |
| 65 |
3 64
|
syl |
|- ( M e. ZZ -> ( M + 1 ) e. RR ) |
| 66 |
|
nndivre |
|- ( ( ( M + 1 ) e. RR /\ N e. NN ) -> ( ( M + 1 ) / N ) e. RR ) |
| 67 |
65 66
|
sylan |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) / N ) e. RR ) |
| 68 |
67
|
flcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( M + 1 ) / N ) ) e. ZZ ) |
| 69 |
68
|
zcnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( M + 1 ) / N ) ) e. CC ) |
| 70 |
58
|
flcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. ZZ ) |
| 71 |
70
|
zcnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. CC ) |
| 72 |
69 71 38
|
subaddd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 1 <-> ( ( |_ ` ( M / N ) ) + 1 ) = ( |_ ` ( ( M + 1 ) / N ) ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 1 <-> ( ( |_ ` ( M / N ) ) + 1 ) = ( |_ ` ( ( M + 1 ) / N ) ) ) ) |
| 74 |
63 73
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 1 ) |
| 75 |
|
iftrue |
|- ( N || ( M + 1 ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 1 ) |
| 76 |
75
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 1 ) |
| 77 |
74 76
|
eqtr4d |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |
| 78 |
|
zmodcl |
|- ( ( ( M + 1 ) e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) e. NN0 ) |
| 79 |
3 78
|
sylan |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) e. NN0 ) |
| 80 |
79
|
nn0red |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) e. RR ) |
| 81 |
|
resubcl |
|- ( ( ( ( M + 1 ) mod N ) e. RR /\ 1 e. RR ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. RR ) |
| 82 |
80 22 81
|
sylancl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. RR ) |
| 83 |
82
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. RR ) |
| 84 |
|
elnn0 |
|- ( ( ( M + 1 ) mod N ) e. NN0 <-> ( ( ( M + 1 ) mod N ) e. NN \/ ( ( M + 1 ) mod N ) = 0 ) ) |
| 85 |
79 84
|
sylib |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) e. NN \/ ( ( M + 1 ) mod N ) = 0 ) ) |
| 86 |
85
|
ord |
|- ( ( M e. ZZ /\ N e. NN ) -> ( -. ( ( M + 1 ) mod N ) e. NN -> ( ( M + 1 ) mod N ) = 0 ) ) |
| 87 |
|
id |
|- ( N e. NN -> N e. NN ) |
| 88 |
|
dvdsval3 |
|- ( ( N e. NN /\ ( M + 1 ) e. ZZ ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) mod N ) = 0 ) ) |
| 89 |
87 3 88
|
syl2anr |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) mod N ) = 0 ) ) |
| 90 |
86 89
|
sylibrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( -. ( ( M + 1 ) mod N ) e. NN -> N || ( M + 1 ) ) ) |
| 91 |
90
|
con1d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( -. N || ( M + 1 ) -> ( ( M + 1 ) mod N ) e. NN ) ) |
| 92 |
91
|
imp |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( M + 1 ) mod N ) e. NN ) |
| 93 |
|
nnm1nn0 |
|- ( ( ( M + 1 ) mod N ) e. NN -> ( ( ( M + 1 ) mod N ) - 1 ) e. NN0 ) |
| 94 |
92 93
|
syl |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. NN0 ) |
| 95 |
94
|
nn0ge0d |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> 0 <_ ( ( ( M + 1 ) mod N ) - 1 ) ) |
| 96 |
13 14
|
jca |
|- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 97 |
96
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( N e. RR /\ 0 < N ) ) |
| 98 |
|
divge0 |
|- ( ( ( ( ( ( M + 1 ) mod N ) - 1 ) e. RR /\ 0 <_ ( ( ( M + 1 ) mod N ) - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) |
| 99 |
83 95 97 98
|
syl21anc |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) |
| 100 |
13
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. RR ) |
| 101 |
80
|
ltm1d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) < ( ( M + 1 ) mod N ) ) |
| 102 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 103 |
|
modlt |
|- ( ( ( M + 1 ) e. RR /\ N e. RR+ ) -> ( ( M + 1 ) mod N ) < N ) |
| 104 |
65 102 103
|
syl2an |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) < N ) |
| 105 |
82 80 100 101 104
|
lttrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) < N ) |
| 106 |
39
|
mulridd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. 1 ) = N ) |
| 107 |
105 106
|
breqtrrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) < ( N x. 1 ) ) |
| 108 |
22
|
a1i |
|- ( ( M e. ZZ /\ N e. NN ) -> 1 e. RR ) |
| 109 |
14
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> 0 < N ) |
| 110 |
|
ltdivmul |
|- ( ( ( ( ( M + 1 ) mod N ) - 1 ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 <-> ( ( ( M + 1 ) mod N ) - 1 ) < ( N x. 1 ) ) ) |
| 111 |
82 108 100 109 110
|
syl112anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 <-> ( ( ( M + 1 ) mod N ) - 1 ) < ( N x. 1 ) ) ) |
| 112 |
107 111
|
mpbird |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) |
| 113 |
112
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) |
| 114 |
|
nndivre |
|- ( ( ( ( ( M + 1 ) mod N ) - 1 ) e. RR /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. RR ) |
| 115 |
82 114
|
sylancom |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. RR ) |
| 116 |
|
flbi2 |
|- ( ( ( |_ ` ( ( M + 1 ) / N ) ) e. ZZ /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. RR ) -> ( ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) <-> ( 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) ) ) |
| 117 |
68 115 116
|
syl2anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) <-> ( 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) <-> ( 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) ) ) |
| 119 |
99 113 118
|
mpbir2and |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) ) |
| 120 |
|
modval |
|- ( ( ( M + 1 ) e. RR /\ N e. RR+ ) -> ( ( M + 1 ) mod N ) = ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 121 |
65 102 120
|
syl2an |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) = ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 122 |
121
|
oveq1d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) = ( ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) - 1 ) ) |
| 123 |
39 69
|
mulcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) e. CC ) |
| 124 |
42 38 123
|
sub32d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) - 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) = ( ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) - 1 ) ) |
| 125 |
122 124
|
eqtr4d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) = ( ( ( M + 1 ) - 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 126 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
| 127 |
36 37 126
|
sylancl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) - 1 ) = M ) |
| 128 |
127
|
oveq1d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) - 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) = ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 129 |
125 128
|
eqtrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) = ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 130 |
129
|
oveq1d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) = ( ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) / N ) ) |
| 131 |
36 123 39 46
|
divsubdird |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) / N ) = ( ( M / N ) - ( ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) / N ) ) ) |
| 132 |
69 39 46
|
divcan3d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) / N ) = ( |_ ` ( ( M + 1 ) / N ) ) ) |
| 133 |
132
|
oveq2d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - ( ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) / N ) ) = ( ( M / N ) - ( |_ ` ( ( M + 1 ) / N ) ) ) ) |
| 134 |
130 131 133
|
3eqtrrd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - ( |_ ` ( ( M + 1 ) / N ) ) ) = ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) |
| 135 |
58
|
recnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. CC ) |
| 136 |
115
|
recnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. CC ) |
| 137 |
135 69 136
|
subaddd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M / N ) - ( |_ ` ( ( M + 1 ) / N ) ) ) = ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) <-> ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) = ( M / N ) ) ) |
| 138 |
134 137
|
mpbid |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) = ( M / N ) ) |
| 139 |
138
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) = ( M / N ) ) |
| 140 |
139
|
fveq2d |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( M / N ) ) ) |
| 141 |
119 140
|
eqtr3d |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( M / N ) ) ) |
| 142 |
69 71
|
subeq0ad |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 0 <-> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( M / N ) ) ) ) |
| 143 |
142
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 0 <-> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( M / N ) ) ) ) |
| 144 |
141 143
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 0 ) |
| 145 |
|
iffalse |
|- ( -. N || ( M + 1 ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 0 ) |
| 146 |
145
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 0 ) |
| 147 |
144 146
|
eqtr4d |
|- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |
| 148 |
77 147
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |