| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 <_ N ) | 
						
							| 3 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N e. RR ) | 
						
							| 5 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> P e. NN ) | 
						
							| 7 |  | eluznn0 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M e. NN0 ) | 
						
							| 9 | 6 8 | nnexpcld |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. NN ) | 
						
							| 10 | 9 | nnred |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. RR ) | 
						
							| 11 | 9 | nngt0d |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 < ( P ^ M ) ) | 
						
							| 12 |  | ge0div |  |-  ( ( N e. RR /\ ( P ^ M ) e. RR /\ 0 < ( P ^ M ) ) -> ( 0 <_ N <-> 0 <_ ( N / ( P ^ M ) ) ) ) | 
						
							| 13 | 4 10 11 12 | syl3anc |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( 0 <_ N <-> 0 <_ ( N / ( P ^ M ) ) ) ) | 
						
							| 14 | 2 13 | mpbid |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 <_ ( N / ( P ^ M ) ) ) | 
						
							| 15 | 8 | nn0red |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M e. RR ) | 
						
							| 16 |  | eluzle |  |-  ( M e. ( ZZ>= ` N ) -> N <_ M ) | 
						
							| 17 | 16 | 3ad2ant2 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N <_ M ) | 
						
							| 18 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 19 | 18 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 20 |  | bernneq3 |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ M e. NN0 ) -> M < ( P ^ M ) ) | 
						
							| 21 | 19 8 20 | syl2anc |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M < ( P ^ M ) ) | 
						
							| 22 | 4 15 10 17 21 | lelttrd |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N < ( P ^ M ) ) | 
						
							| 23 | 9 | nncnd |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. CC ) | 
						
							| 24 | 23 | mulridd |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( P ^ M ) x. 1 ) = ( P ^ M ) ) | 
						
							| 25 | 22 24 | breqtrrd |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N < ( ( P ^ M ) x. 1 ) ) | 
						
							| 26 |  | 1red |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 1 e. RR ) | 
						
							| 27 |  | ltdivmul |  |-  ( ( N e. RR /\ 1 e. RR /\ ( ( P ^ M ) e. RR /\ 0 < ( P ^ M ) ) ) -> ( ( N / ( P ^ M ) ) < 1 <-> N < ( ( P ^ M ) x. 1 ) ) ) | 
						
							| 28 | 4 26 10 11 27 | syl112anc |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( N / ( P ^ M ) ) < 1 <-> N < ( ( P ^ M ) x. 1 ) ) ) | 
						
							| 29 | 25 28 | mpbird |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) < 1 ) | 
						
							| 30 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 31 | 29 30 | breqtrrdi |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) < ( 0 + 1 ) ) | 
						
							| 32 | 4 9 | nndivred |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) e. RR ) | 
						
							| 33 |  | 0z |  |-  0 e. ZZ | 
						
							| 34 |  | flbi |  |-  ( ( ( N / ( P ^ M ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( N / ( P ^ M ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ M ) ) /\ ( N / ( P ^ M ) ) < ( 0 + 1 ) ) ) ) | 
						
							| 35 | 32 33 34 | sylancl |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( |_ ` ( N / ( P ^ M ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ M ) ) /\ ( N / ( P ^ M ) ) < ( 0 + 1 ) ) ) ) | 
						
							| 36 | 14 31 35 | mpbir2and |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( |_ ` ( N / ( P ^ M ) ) ) = 0 ) |