| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( x = 0 -> ( ZZ>= ` x ) = ( ZZ>= ` 0 ) ) |
| 2 |
|
fveq2 |
|- ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) |
| 3 |
2
|
oveq2d |
|- ( x = 0 -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` 0 ) ) ) |
| 4 |
|
fvoveq1 |
|- ( x = 0 -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 5 |
4
|
sumeq2sdv |
|- ( x = 0 -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 6 |
3 5
|
eqeq12d |
|- ( x = 0 -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) ) |
| 7 |
1 6
|
raleqbidv |
|- ( x = 0 -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` 0 ) ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) ) |
| 8 |
7
|
imbi2d |
|- ( x = 0 -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` 0 ) ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) ) ) |
| 9 |
|
fveq2 |
|- ( x = n -> ( ZZ>= ` x ) = ( ZZ>= ` n ) ) |
| 10 |
|
fveq2 |
|- ( x = n -> ( ! ` x ) = ( ! ` n ) ) |
| 11 |
10
|
oveq2d |
|- ( x = n -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` n ) ) ) |
| 12 |
|
fvoveq1 |
|- ( x = n -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( n / ( P ^ k ) ) ) ) |
| 13 |
12
|
sumeq2sdv |
|- ( x = n -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) |
| 14 |
11 13
|
eqeq12d |
|- ( x = n -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 15 |
9 14
|
raleqbidv |
|- ( x = n -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 16 |
15
|
imbi2d |
|- ( x = n -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) ) |
| 17 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( ZZ>= ` x ) = ( ZZ>= ` ( n + 1 ) ) ) |
| 18 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( ! ` x ) = ( ! ` ( n + 1 ) ) ) |
| 19 |
18
|
oveq2d |
|- ( x = ( n + 1 ) -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` ( n + 1 ) ) ) ) |
| 20 |
|
fvoveq1 |
|- ( x = ( n + 1 ) -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) |
| 21 |
20
|
sumeq2sdv |
|- ( x = ( n + 1 ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) |
| 22 |
19 21
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 23 |
17 22
|
raleqbidv |
|- ( x = ( n + 1 ) -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) ) |
| 25 |
|
fveq2 |
|- ( x = N -> ( ZZ>= ` x ) = ( ZZ>= ` N ) ) |
| 26 |
|
fveq2 |
|- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
| 27 |
26
|
oveq2d |
|- ( x = N -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` N ) ) ) |
| 28 |
|
fvoveq1 |
|- ( x = N -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 29 |
28
|
sumeq2sdv |
|- ( x = N -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 30 |
27 29
|
eqeq12d |
|- ( x = N -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 31 |
25 30
|
raleqbidv |
|- ( x = N -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 32 |
31
|
imbi2d |
|- ( x = N -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
| 33 |
|
fzfid |
|- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> ( 1 ... m ) e. Fin ) |
| 34 |
|
sumz |
|- ( ( ( 1 ... m ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... m ) e. Fin ) -> sum_ k e. ( 1 ... m ) 0 = 0 ) |
| 35 |
34
|
olcs |
|- ( ( 1 ... m ) e. Fin -> sum_ k e. ( 1 ... m ) 0 = 0 ) |
| 36 |
33 35
|
syl |
|- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> sum_ k e. ( 1 ... m ) 0 = 0 ) |
| 37 |
|
0nn0 |
|- 0 e. NN0 |
| 38 |
|
elfznn |
|- ( k e. ( 1 ... m ) -> k e. NN ) |
| 39 |
38
|
nnnn0d |
|- ( k e. ( 1 ... m ) -> k e. NN0 ) |
| 40 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 41 |
39 40
|
eleqtrdi |
|- ( k e. ( 1 ... m ) -> k e. ( ZZ>= ` 0 ) ) |
| 42 |
41
|
adantl |
|- ( ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) /\ k e. ( 1 ... m ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 43 |
|
simpll |
|- ( ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) /\ k e. ( 1 ... m ) ) -> P e. Prime ) |
| 44 |
|
pcfaclem |
|- ( ( 0 e. NN0 /\ k e. ( ZZ>= ` 0 ) /\ P e. Prime ) -> ( |_ ` ( 0 / ( P ^ k ) ) ) = 0 ) |
| 45 |
37 42 43 44
|
mp3an2i |
|- ( ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( 0 / ( P ^ k ) ) ) = 0 ) |
| 46 |
45
|
sumeq2dv |
|- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) 0 ) |
| 47 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 48 |
47
|
oveq2i |
|- ( P pCnt ( ! ` 0 ) ) = ( P pCnt 1 ) |
| 49 |
|
pc1 |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
| 50 |
48 49
|
eqtrid |
|- ( P e. Prime -> ( P pCnt ( ! ` 0 ) ) = 0 ) |
| 51 |
50
|
adantr |
|- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> ( P pCnt ( ! ` 0 ) ) = 0 ) |
| 52 |
36 46 51
|
3eqtr4rd |
|- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 53 |
52
|
ralrimiva |
|- ( P e. Prime -> A. m e. ( ZZ>= ` 0 ) ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 54 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
| 55 |
54
|
adantr |
|- ( ( n e. NN0 /\ P e. Prime ) -> n e. ZZ ) |
| 56 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
| 57 |
|
peano2uz |
|- ( n e. ( ZZ>= ` n ) -> ( n + 1 ) e. ( ZZ>= ` n ) ) |
| 58 |
55 56 57
|
3syl |
|- ( ( n e. NN0 /\ P e. Prime ) -> ( n + 1 ) e. ( ZZ>= ` n ) ) |
| 59 |
|
uzss |
|- ( ( n + 1 ) e. ( ZZ>= ` n ) -> ( ZZ>= ` ( n + 1 ) ) C_ ( ZZ>= ` n ) ) |
| 60 |
|
ssralv |
|- ( ( ZZ>= ` ( n + 1 ) ) C_ ( ZZ>= ` n ) -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 61 |
58 59 60
|
3syl |
|- ( ( n e. NN0 /\ P e. Prime ) -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 62 |
|
oveq1 |
|- ( ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) = ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) ) |
| 63 |
|
simpll |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> n e. NN0 ) |
| 64 |
|
facp1 |
|- ( n e. NN0 -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
| 65 |
63 64
|
syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
| 66 |
65
|
oveq2d |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( ! ` ( n + 1 ) ) ) = ( P pCnt ( ( ! ` n ) x. ( n + 1 ) ) ) ) |
| 67 |
|
simplr |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> P e. Prime ) |
| 68 |
|
faccl |
|- ( n e. NN0 -> ( ! ` n ) e. NN ) |
| 69 |
|
nnz |
|- ( ( ! ` n ) e. NN -> ( ! ` n ) e. ZZ ) |
| 70 |
|
nnne0 |
|- ( ( ! ` n ) e. NN -> ( ! ` n ) =/= 0 ) |
| 71 |
69 70
|
jca |
|- ( ( ! ` n ) e. NN -> ( ( ! ` n ) e. ZZ /\ ( ! ` n ) =/= 0 ) ) |
| 72 |
63 68 71
|
3syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( ! ` n ) e. ZZ /\ ( ! ` n ) =/= 0 ) ) |
| 73 |
|
nn0p1nn |
|- ( n e. NN0 -> ( n + 1 ) e. NN ) |
| 74 |
|
nnz |
|- ( ( n + 1 ) e. NN -> ( n + 1 ) e. ZZ ) |
| 75 |
|
nnne0 |
|- ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) |
| 76 |
74 75
|
jca |
|- ( ( n + 1 ) e. NN -> ( ( n + 1 ) e. ZZ /\ ( n + 1 ) =/= 0 ) ) |
| 77 |
63 73 76
|
3syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( n + 1 ) e. ZZ /\ ( n + 1 ) =/= 0 ) ) |
| 78 |
|
pcmul |
|- ( ( P e. Prime /\ ( ( ! ` n ) e. ZZ /\ ( ! ` n ) =/= 0 ) /\ ( ( n + 1 ) e. ZZ /\ ( n + 1 ) =/= 0 ) ) -> ( P pCnt ( ( ! ` n ) x. ( n + 1 ) ) ) = ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) ) |
| 79 |
67 72 77 78
|
syl3anc |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( ( ! ` n ) x. ( n + 1 ) ) ) = ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) ) |
| 80 |
66 79
|
eqtr2d |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) = ( P pCnt ( ! ` ( n + 1 ) ) ) ) |
| 81 |
63
|
adantr |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> n e. NN0 ) |
| 82 |
81
|
nn0zd |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> n e. ZZ ) |
| 83 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 84 |
83
|
ad2antlr |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> P e. NN ) |
| 85 |
|
nnexpcl |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN ) |
| 86 |
84 39 85
|
syl2an |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( P ^ k ) e. NN ) |
| 87 |
|
fldivp1 |
|- ( ( n e. ZZ /\ ( P ^ k ) e. NN ) -> ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = if ( ( P ^ k ) || ( n + 1 ) , 1 , 0 ) ) |
| 88 |
82 86 87
|
syl2anc |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = if ( ( P ^ k ) || ( n + 1 ) , 1 , 0 ) ) |
| 89 |
|
elfzuz |
|- ( k e. ( 1 ... m ) -> k e. ( ZZ>= ` 1 ) ) |
| 90 |
63 73
|
syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. NN ) |
| 91 |
67 90
|
pccld |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. NN0 ) |
| 92 |
91
|
nn0zd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. ZZ ) |
| 93 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 1 ) /\ ( P pCnt ( n + 1 ) ) e. ZZ ) -> ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) <-> k <_ ( P pCnt ( n + 1 ) ) ) ) |
| 94 |
89 92 93
|
syl2anr |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) <-> k <_ ( P pCnt ( n + 1 ) ) ) ) |
| 95 |
|
simpllr |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> P e. Prime ) |
| 96 |
81 73
|
syl |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n + 1 ) e. NN ) |
| 97 |
96
|
nnzd |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n + 1 ) e. ZZ ) |
| 98 |
39
|
adantl |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> k e. NN0 ) |
| 99 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( n + 1 ) e. ZZ /\ k e. NN0 ) -> ( k <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ k ) || ( n + 1 ) ) ) |
| 100 |
95 97 98 99
|
syl3anc |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( k <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ k ) || ( n + 1 ) ) ) |
| 101 |
94 100
|
bitr2d |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( P ^ k ) || ( n + 1 ) <-> k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) ) ) |
| 102 |
101
|
ifbid |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> if ( ( P ^ k ) || ( n + 1 ) , 1 , 0 ) = if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) ) |
| 103 |
88 102
|
eqtrd |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) ) |
| 104 |
103
|
sumeq2dv |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) ) |
| 105 |
|
fzfid |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( 1 ... m ) e. Fin ) |
| 106 |
63
|
nn0red |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> n e. RR ) |
| 107 |
|
peano2re |
|- ( n e. RR -> ( n + 1 ) e. RR ) |
| 108 |
106 107
|
syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. RR ) |
| 109 |
108
|
adantr |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n + 1 ) e. RR ) |
| 110 |
109 86
|
nndivred |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( n + 1 ) / ( P ^ k ) ) e. RR ) |
| 111 |
110
|
flcld |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) e. ZZ ) |
| 112 |
111
|
zcnd |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) e. CC ) |
| 113 |
106
|
adantr |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> n e. RR ) |
| 114 |
113 86
|
nndivred |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n / ( P ^ k ) ) e. RR ) |
| 115 |
114
|
flcld |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( n / ( P ^ k ) ) ) e. ZZ ) |
| 116 |
115
|
zcnd |
|- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( n / ( P ^ k ) ) ) e. CC ) |
| 117 |
105 112 116
|
fsumsub |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = ( sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 118 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
| 119 |
91
|
nn0red |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. RR ) |
| 120 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( n + 1 ) ) -> m e. ZZ ) |
| 121 |
120
|
adantl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> m e. ZZ ) |
| 122 |
121
|
zred |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> m e. RR ) |
| 123 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 124 |
123
|
ad2antlr |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> P e. ( ZZ>= ` 2 ) ) |
| 125 |
90
|
nnnn0d |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. NN0 ) |
| 126 |
|
bernneq3 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( n + 1 ) e. NN0 ) -> ( n + 1 ) < ( P ^ ( n + 1 ) ) ) |
| 127 |
124 125 126
|
syl2anc |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) < ( P ^ ( n + 1 ) ) ) |
| 128 |
119 108
|
letrid |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) \/ ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) ) ) |
| 129 |
128
|
ord |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( -. ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) -> ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) ) ) |
| 130 |
90
|
nnzd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. ZZ ) |
| 131 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( n + 1 ) e. ZZ /\ ( n + 1 ) e. NN0 ) -> ( ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ ( n + 1 ) ) || ( n + 1 ) ) ) |
| 132 |
67 130 125 131
|
syl3anc |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ ( n + 1 ) ) || ( n + 1 ) ) ) |
| 133 |
84 125
|
nnexpcld |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P ^ ( n + 1 ) ) e. NN ) |
| 134 |
133
|
nnzd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P ^ ( n + 1 ) ) e. ZZ ) |
| 135 |
|
dvdsle |
|- ( ( ( P ^ ( n + 1 ) ) e. ZZ /\ ( n + 1 ) e. NN ) -> ( ( P ^ ( n + 1 ) ) || ( n + 1 ) -> ( P ^ ( n + 1 ) ) <_ ( n + 1 ) ) ) |
| 136 |
134 90 135
|
syl2anc |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P ^ ( n + 1 ) ) || ( n + 1 ) -> ( P ^ ( n + 1 ) ) <_ ( n + 1 ) ) ) |
| 137 |
133
|
nnred |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P ^ ( n + 1 ) ) e. RR ) |
| 138 |
137 108
|
lenltd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P ^ ( n + 1 ) ) <_ ( n + 1 ) <-> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 139 |
136 138
|
sylibd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P ^ ( n + 1 ) ) || ( n + 1 ) -> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 140 |
132 139
|
sylbid |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) -> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 141 |
129 140
|
syld |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( -. ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) -> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 142 |
127 141
|
mt4d |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) ) |
| 143 |
|
eluzle |
|- ( m e. ( ZZ>= ` ( n + 1 ) ) -> ( n + 1 ) <_ m ) |
| 144 |
143
|
adantl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) <_ m ) |
| 145 |
119 108 122 142 144
|
letrd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) <_ m ) |
| 146 |
|
eluz |
|- ( ( ( P pCnt ( n + 1 ) ) e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) <-> ( P pCnt ( n + 1 ) ) <_ m ) ) |
| 147 |
92 121 146
|
syl2anc |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) <-> ( P pCnt ( n + 1 ) ) <_ m ) ) |
| 148 |
145 147
|
mpbird |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) ) |
| 149 |
|
fzss2 |
|- ( m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) -> ( 1 ... ( P pCnt ( n + 1 ) ) ) C_ ( 1 ... m ) ) |
| 150 |
148 149
|
syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( 1 ... ( P pCnt ( n + 1 ) ) ) C_ ( 1 ... m ) ) |
| 151 |
|
sumhash |
|- ( ( ( 1 ... m ) e. Fin /\ ( 1 ... ( P pCnt ( n + 1 ) ) ) C_ ( 1 ... m ) ) -> sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) = ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) ) |
| 152 |
118 150 151
|
sylancr |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) = ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) ) |
| 153 |
|
hashfz1 |
|- ( ( P pCnt ( n + 1 ) ) e. NN0 -> ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) = ( P pCnt ( n + 1 ) ) ) |
| 154 |
91 153
|
syl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) = ( P pCnt ( n + 1 ) ) ) |
| 155 |
152 154
|
eqtrd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) = ( P pCnt ( n + 1 ) ) ) |
| 156 |
104 117 155
|
3eqtr3d |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) = ( P pCnt ( n + 1 ) ) ) |
| 157 |
105 112
|
fsumcl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) e. CC ) |
| 158 |
105 116
|
fsumcl |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) e. CC ) |
| 159 |
119
|
recnd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. CC ) |
| 160 |
157 158 159
|
subaddd |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) = ( P pCnt ( n + 1 ) ) <-> ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 161 |
156 160
|
mpbid |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) |
| 162 |
80 161
|
eqeq12d |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) = ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) <-> ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 163 |
62 162
|
imbitrid |
|- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 164 |
163
|
ralimdva |
|- ( ( n e. NN0 /\ P e. Prime ) -> ( A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 165 |
61 164
|
syld |
|- ( ( n e. NN0 /\ P e. Prime ) -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 166 |
165
|
ex |
|- ( n e. NN0 -> ( P e. Prime -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) ) |
| 167 |
166
|
a2d |
|- ( n e. NN0 -> ( ( P e. Prime -> A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) -> ( P e. Prime -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) ) |
| 168 |
8 16 24 32 53 167
|
nn0ind |
|- ( N e. NN0 -> ( P e. Prime -> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 169 |
168
|
imp |
|- ( ( N e. NN0 /\ P e. Prime ) -> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 170 |
|
oveq2 |
|- ( m = M -> ( 1 ... m ) = ( 1 ... M ) ) |
| 171 |
170
|
sumeq1d |
|- ( m = M -> sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 172 |
171
|
eqeq2d |
|- ( m = M -> ( ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 173 |
172
|
rspcv |
|- ( M e. ( ZZ>= ` N ) -> ( A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 174 |
169 173
|
syl5 |
|- ( M e. ( ZZ>= ` N ) -> ( ( N e. NN0 /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 175 |
174
|
3impib |
|- ( ( M e. ( ZZ>= ` N ) /\ N e. NN0 /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 176 |
175
|
3com12 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |