| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> P e. Prime ) |
| 2 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. NN0 ) |
| 4 |
3
|
faccld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) e. NN ) |
| 5 |
4
|
nnzd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) e. ZZ ) |
| 6 |
4
|
nnne0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) =/= 0 ) |
| 7 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. NN0 ) |
| 9 |
8
|
faccld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) e. NN ) |
| 10 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. NN0 ) |
| 12 |
11
|
faccld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) e. NN ) |
| 13 |
9 12
|
nnmulcld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 14 |
|
pcdiv |
|- ( ( P e. Prime /\ ( ( ! ` N ) e. ZZ /\ ( ! ` N ) =/= 0 ) /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) -> ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 15 |
1 5 6 13 14
|
syl121anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 16 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 17 |
16
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 18 |
17
|
oveq2d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 19 |
|
fzfid |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( 1 ... N ) e. Fin ) |
| 20 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> N e. RR ) |
| 23 |
|
simpl3 |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> P e. Prime ) |
| 24 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 25 |
23 24
|
syl |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> P e. NN ) |
| 26 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
| 27 |
26
|
nnnn0d |
|- ( k e. ( 1 ... N ) -> k e. NN0 ) |
| 28 |
27
|
adantl |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> k e. NN0 ) |
| 29 |
25 28
|
nnexpcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( P ^ k ) e. NN ) |
| 30 |
22 29
|
nndivred |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( N / ( P ^ k ) ) e. RR ) |
| 31 |
30
|
flcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. CC ) |
| 33 |
11
|
nn0red |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. RR ) |
| 34 |
21 33
|
resubcld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. RR ) |
| 35 |
34
|
adantr |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( N - K ) e. RR ) |
| 36 |
35 29
|
nndivred |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( ( N - K ) / ( P ^ k ) ) e. RR ) |
| 37 |
36
|
flcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) e. ZZ ) |
| 38 |
37
|
zcnd |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) e. CC ) |
| 39 |
33
|
adantr |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> K e. RR ) |
| 40 |
39 29
|
nndivred |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( K / ( P ^ k ) ) e. RR ) |
| 41 |
40
|
flcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( K / ( P ^ k ) ) ) e. ZZ ) |
| 42 |
41
|
zcnd |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( K / ( P ^ k ) ) ) e. CC ) |
| 43 |
38 42
|
addcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) e. CC ) |
| 44 |
19 32 43
|
fsumsub |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) - sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
| 45 |
3
|
nn0zd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ZZ ) |
| 46 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
| 47 |
45 46
|
syl |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` N ) ) |
| 48 |
|
pcfac |
|- ( ( N e. NN0 /\ N e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 49 |
3 47 1 48
|
syl3anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 50 |
11
|
nn0ge0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> 0 <_ K ) |
| 51 |
21 33
|
subge02d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( 0 <_ K <-> ( N - K ) <_ N ) ) |
| 52 |
50 51
|
mpbid |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) <_ N ) |
| 53 |
11
|
nn0zd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. ZZ ) |
| 54 |
45 53
|
zsubcld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. ZZ ) |
| 55 |
|
eluz |
|- ( ( ( N - K ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - K ) ) <-> ( N - K ) <_ N ) ) |
| 56 |
54 45 55
|
syl2anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N e. ( ZZ>= ` ( N - K ) ) <-> ( N - K ) <_ N ) ) |
| 57 |
52 56
|
mpbird |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` ( N - K ) ) ) |
| 58 |
|
pcfac |
|- ( ( ( N - K ) e. NN0 /\ N e. ( ZZ>= ` ( N - K ) ) /\ P e. Prime ) -> ( P pCnt ( ! ` ( N - K ) ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) ) |
| 59 |
8 57 1 58
|
syl3anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` ( N - K ) ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) ) |
| 60 |
|
elfzuz3 |
|- ( K e. ( 0 ... N ) -> N e. ( ZZ>= ` K ) ) |
| 61 |
60
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` K ) ) |
| 62 |
|
pcfac |
|- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) /\ P e. Prime ) -> ( P pCnt ( ! ` K ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) |
| 63 |
11 61 1 62
|
syl3anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` K ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) |
| 64 |
59 63
|
oveq12d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
| 65 |
9
|
nnzd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) e. ZZ ) |
| 66 |
9
|
nnne0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) =/= 0 ) |
| 67 |
12
|
nnzd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) e. ZZ ) |
| 68 |
12
|
nnne0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) =/= 0 ) |
| 69 |
|
pcmul |
|- ( ( P e. Prime /\ ( ( ! ` ( N - K ) ) e. ZZ /\ ( ! ` ( N - K ) ) =/= 0 ) /\ ( ( ! ` K ) e. ZZ /\ ( ! ` K ) =/= 0 ) ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) ) |
| 70 |
1 65 66 67 68 69
|
syl122anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) ) |
| 71 |
19 38 42
|
fsumadd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
| 72 |
64 70 71
|
3eqtr4d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
| 73 |
49 72
|
oveq12d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) - sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
| 74 |
44 73
|
eqtr4d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 75 |
15 18 74
|
3eqtr4d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |