| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|
| 2 |
|
nnnn0 |
|
| 3 |
2
|
3ad2ant1 |
|
| 4 |
3
|
faccld |
|
| 5 |
4
|
nnzd |
|
| 6 |
4
|
nnne0d |
|
| 7 |
|
fznn0sub |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
8
|
faccld |
|
| 10 |
|
elfznn0 |
|
| 11 |
10
|
3ad2ant2 |
|
| 12 |
11
|
faccld |
|
| 13 |
9 12
|
nnmulcld |
|
| 14 |
|
pcdiv |
|
| 15 |
1 5 6 13 14
|
syl121anc |
|
| 16 |
|
bcval2 |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
fzfid |
|
| 20 |
|
nnre |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpl3 |
|
| 24 |
|
prmnn |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
elfznn |
|
| 27 |
26
|
nnnn0d |
|
| 28 |
27
|
adantl |
|
| 29 |
25 28
|
nnexpcld |
|
| 30 |
22 29
|
nndivred |
|
| 31 |
30
|
flcld |
|
| 32 |
31
|
zcnd |
|
| 33 |
11
|
nn0red |
|
| 34 |
21 33
|
resubcld |
|
| 35 |
34
|
adantr |
|
| 36 |
35 29
|
nndivred |
|
| 37 |
36
|
flcld |
|
| 38 |
37
|
zcnd |
|
| 39 |
33
|
adantr |
|
| 40 |
39 29
|
nndivred |
|
| 41 |
40
|
flcld |
|
| 42 |
41
|
zcnd |
|
| 43 |
38 42
|
addcld |
|
| 44 |
19 32 43
|
fsumsub |
|
| 45 |
3
|
nn0zd |
|
| 46 |
|
uzid |
|
| 47 |
45 46
|
syl |
|
| 48 |
|
pcfac |
|
| 49 |
3 47 1 48
|
syl3anc |
|
| 50 |
11
|
nn0ge0d |
|
| 51 |
21 33
|
subge02d |
|
| 52 |
50 51
|
mpbid |
|
| 53 |
11
|
nn0zd |
|
| 54 |
45 53
|
zsubcld |
|
| 55 |
|
eluz |
|
| 56 |
54 45 55
|
syl2anc |
|
| 57 |
52 56
|
mpbird |
|
| 58 |
|
pcfac |
|
| 59 |
8 57 1 58
|
syl3anc |
|
| 60 |
|
elfzuz3 |
|
| 61 |
60
|
3ad2ant2 |
|
| 62 |
|
pcfac |
|
| 63 |
11 61 1 62
|
syl3anc |
|
| 64 |
59 63
|
oveq12d |
|
| 65 |
9
|
nnzd |
|
| 66 |
9
|
nnne0d |
|
| 67 |
12
|
nnzd |
|
| 68 |
12
|
nnne0d |
|
| 69 |
|
pcmul |
|
| 70 |
1 65 66 67 68 69
|
syl122anc |
|
| 71 |
19 38 42
|
fsumadd |
|
| 72 |
64 70 71
|
3eqtr4d |
|
| 73 |
49 72
|
oveq12d |
|
| 74 |
44 73
|
eqtr4d |
|
| 75 |
15 18 74
|
3eqtr4d |
|