Metamath Proof Explorer


Theorem qexpz

Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion qexpz A N A N A

Proof

Step Hyp Ref Expression
1 eleq1 A = 0 A 0
2 simpll2 A N A N A 0 p N
3 2 nncnd A N A N A 0 p N
4 3 mul01d A N A N A 0 p N 0 = 0
5 simpr A N A N A 0 p p
6 simpll3 A N A N A 0 p A N
7 simpll1 A N A N A 0 p A
8 qcn A A
9 7 8 syl A N A N A 0 p A
10 simplr A N A N A 0 p A 0
11 2 nnzd A N A N A 0 p N
12 9 10 11 expne0d A N A N A 0 p A N 0
13 pczcl p A N A N 0 p pCnt A N 0
14 5 6 12 13 syl12anc A N A N A 0 p p pCnt A N 0
15 14 nn0ge0d A N A N A 0 p 0 p pCnt A N
16 pcexp p A A 0 N p pCnt A N = N p pCnt A
17 5 7 10 11 16 syl121anc A N A N A 0 p p pCnt A N = N p pCnt A
18 15 17 breqtrd A N A N A 0 p 0 N p pCnt A
19 4 18 eqbrtrd A N A N A 0 p N 0 N p pCnt A
20 0red A N A N A 0 p 0
21 pcqcl p A A 0 p pCnt A
22 5 7 10 21 syl12anc A N A N A 0 p p pCnt A
23 22 zred A N A N A 0 p p pCnt A
24 2 nnred A N A N A 0 p N
25 2 nngt0d A N A N A 0 p 0 < N
26 lemul2 0 p pCnt A N 0 < N 0 p pCnt A N 0 N p pCnt A
27 20 23 24 25 26 syl112anc A N A N A 0 p 0 p pCnt A N 0 N p pCnt A
28 19 27 mpbird A N A N A 0 p 0 p pCnt A
29 28 ralrimiva A N A N A 0 p 0 p pCnt A
30 simpl1 A N A N A 0 A
31 pcz A A p 0 p pCnt A
32 30 31 syl A N A N A 0 A p 0 p pCnt A
33 29 32 mpbird A N A N A 0 A
34 0zd A N A N 0
35 1 33 34 pm2.61ne A N A N A