Metamath Proof Explorer


Theorem expnprm

Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion expnprm AN2¬AN

Proof

Step Hyp Ref Expression
1 eluz2b3 N2NN1
2 1 simprbi N2N1
3 2 adantl AN2N1
4 eluzelz N2N
5 4 ad2antlr AN2ANN
6 simpr AN2ANAN
7 simpll AN2ANA
8 prmnn ANAN
9 8 adantl AN2ANAN
10 9 nnne0d AN2ANAN0
11 eluz2nn N2N
12 11 ad2antlr AN2ANN
13 12 0expd AN2AN0N=0
14 10 13 neeqtrrd AN2ANAN0N
15 oveq1 A=0AN=0N
16 15 necon3i AN0NA0
17 14 16 syl AN2ANA0
18 pcqcl ANAA0ANpCntA
19 6 7 17 18 syl12anc AN2ANANpCntA
20 dvdsmul1 NANpCntANNANpCntA
21 5 19 20 syl2anc AN2ANNNANpCntA
22 9 nncnd AN2ANAN
23 22 exp1d AN2ANAN1=AN
24 23 oveq2d AN2ANANpCntAN1=ANpCntAN
25 1z 1
26 pcid AN1ANpCntAN1=1
27 6 25 26 sylancl AN2ANANpCntAN1=1
28 pcexp ANAA0NANpCntAN=NANpCntA
29 6 7 17 5 28 syl121anc AN2ANANpCntAN=NANpCntA
30 24 27 29 3eqtr3rd AN2ANNANpCntA=1
31 21 30 breqtrd AN2ANN1
32 31 ex AN2ANN1
33 11 adantl AN2N
34 33 nnnn0d AN2N0
35 dvds1 N0N1N=1
36 34 35 syl AN2N1N=1
37 32 36 sylibd AN2ANN=1
38 37 necon3ad AN2N1¬AN
39 3 38 mpd AN2¬AN