| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b3 |
|
| 2 |
1
|
simprbi |
|
| 3 |
2
|
adantl |
|
| 4 |
|
eluzelz |
|
| 5 |
4
|
ad2antlr |
|
| 6 |
|
simpr |
|
| 7 |
|
simpll |
|
| 8 |
|
prmnn |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
nnne0d |
|
| 11 |
|
eluz2nn |
|
| 12 |
11
|
ad2antlr |
|
| 13 |
12
|
0expd |
|
| 14 |
10 13
|
neeqtrrd |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
necon3i |
|
| 17 |
14 16
|
syl |
|
| 18 |
|
pcqcl |
|
| 19 |
6 7 17 18
|
syl12anc |
|
| 20 |
|
dvdsmul1 |
|
| 21 |
5 19 20
|
syl2anc |
|
| 22 |
9
|
nncnd |
|
| 23 |
22
|
exp1d |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
1z |
|
| 26 |
|
pcid |
|
| 27 |
6 25 26
|
sylancl |
|
| 28 |
|
pcexp |
|
| 29 |
6 7 17 5 28
|
syl121anc |
|
| 30 |
24 27 29
|
3eqtr3rd |
|
| 31 |
21 30
|
breqtrd |
|
| 32 |
31
|
ex |
|
| 33 |
11
|
adantl |
|
| 34 |
33
|
nnnn0d |
|
| 35 |
|
dvds1 |
|
| 36 |
34 35
|
syl |
|
| 37 |
32 36
|
sylibd |
|
| 38 |
37
|
necon3ad |
|
| 39 |
3 38
|
mpd |
|