Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | expnprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b3 | |
|
2 | 1 | simprbi | |
3 | 2 | adantl | |
4 | eluzelz | |
|
5 | 4 | ad2antlr | |
6 | simpr | |
|
7 | simpll | |
|
8 | prmnn | |
|
9 | 8 | adantl | |
10 | 9 | nnne0d | |
11 | eluz2nn | |
|
12 | 11 | ad2antlr | |
13 | 12 | 0expd | |
14 | 10 13 | neeqtrrd | |
15 | oveq1 | |
|
16 | 15 | necon3i | |
17 | 14 16 | syl | |
18 | pcqcl | |
|
19 | 6 7 17 18 | syl12anc | |
20 | dvdsmul1 | |
|
21 | 5 19 20 | syl2anc | |
22 | 9 | nncnd | |
23 | 22 | exp1d | |
24 | 23 | oveq2d | |
25 | 1z | |
|
26 | pcid | |
|
27 | 6 25 26 | sylancl | |
28 | pcexp | |
|
29 | 6 7 17 5 28 | syl121anc | |
30 | 24 27 29 | 3eqtr3rd | |
31 | 21 30 | breqtrd | |
32 | 31 | ex | |
33 | 11 | adantl | |
34 | 33 | nnnn0d | |
35 | dvds1 | |
|
36 | 34 35 | syl | |
37 | 32 36 | sylibd | |
38 | 37 | necon3ad | |
39 | 3 38 | mpd | |