| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
| 2 |
1
|
simprbi |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 1 ) |
| 3 |
2
|
adantl |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> N =/= 1 ) |
| 4 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
| 5 |
4
|
ad2antlr |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N e. ZZ ) |
| 6 |
|
simpr |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) e. Prime ) |
| 7 |
|
simpll |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> A e. QQ ) |
| 8 |
|
prmnn |
|- ( ( A ^ N ) e. Prime -> ( A ^ N ) e. NN ) |
| 9 |
8
|
adantl |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) e. NN ) |
| 10 |
9
|
nnne0d |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) =/= 0 ) |
| 11 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N e. NN ) |
| 13 |
12
|
0expd |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( 0 ^ N ) = 0 ) |
| 14 |
10 13
|
neeqtrrd |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) =/= ( 0 ^ N ) ) |
| 15 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
| 16 |
15
|
necon3i |
|- ( ( A ^ N ) =/= ( 0 ^ N ) -> A =/= 0 ) |
| 17 |
14 16
|
syl |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> A =/= 0 ) |
| 18 |
|
pcqcl |
|- ( ( ( A ^ N ) e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( ( A ^ N ) pCnt A ) e. ZZ ) |
| 19 |
6 7 17 18
|
syl12anc |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt A ) e. ZZ ) |
| 20 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ ( ( A ^ N ) pCnt A ) e. ZZ ) -> N || ( N x. ( ( A ^ N ) pCnt A ) ) ) |
| 21 |
5 19 20
|
syl2anc |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N || ( N x. ( ( A ^ N ) pCnt A ) ) ) |
| 22 |
9
|
nncnd |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) e. CC ) |
| 23 |
22
|
exp1d |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) ^ 1 ) = ( A ^ N ) ) |
| 24 |
23
|
oveq2d |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt ( ( A ^ N ) ^ 1 ) ) = ( ( A ^ N ) pCnt ( A ^ N ) ) ) |
| 25 |
|
1z |
|- 1 e. ZZ |
| 26 |
|
pcid |
|- ( ( ( A ^ N ) e. Prime /\ 1 e. ZZ ) -> ( ( A ^ N ) pCnt ( ( A ^ N ) ^ 1 ) ) = 1 ) |
| 27 |
6 25 26
|
sylancl |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt ( ( A ^ N ) ^ 1 ) ) = 1 ) |
| 28 |
|
pcexp |
|- ( ( ( A ^ N ) e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( ( A ^ N ) pCnt ( A ^ N ) ) = ( N x. ( ( A ^ N ) pCnt A ) ) ) |
| 29 |
6 7 17 5 28
|
syl121anc |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt ( A ^ N ) ) = ( N x. ( ( A ^ N ) pCnt A ) ) ) |
| 30 |
24 27 29
|
3eqtr3rd |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( N x. ( ( A ^ N ) pCnt A ) ) = 1 ) |
| 31 |
21 30
|
breqtrd |
|- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N || 1 ) |
| 32 |
31
|
ex |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( A ^ N ) e. Prime -> N || 1 ) ) |
| 33 |
11
|
adantl |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> N e. NN ) |
| 34 |
33
|
nnnn0d |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> N e. NN0 ) |
| 35 |
|
dvds1 |
|- ( N e. NN0 -> ( N || 1 <-> N = 1 ) ) |
| 36 |
34 35
|
syl |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( N || 1 <-> N = 1 ) ) |
| 37 |
32 36
|
sylibd |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( A ^ N ) e. Prime -> N = 1 ) ) |
| 38 |
37
|
necon3ad |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( N =/= 1 -> -. ( A ^ N ) e. Prime ) ) |
| 39 |
3 38
|
mpd |
|- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> -. ( A ^ N ) e. Prime ) |