| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppssnn0.f |
|- ( ph -> F Fn NN0 ) |
| 2 |
|
suppssnn0.n |
|- ( ( ( ph /\ k e. NN0 ) /\ N <_ k ) -> ( F ` k ) = Z ) |
| 3 |
|
suppssnn0.1 |
|- ( ph -> N e. ZZ ) |
| 4 |
|
dffn3 |
|- ( F Fn NN0 <-> F : NN0 --> ran F ) |
| 5 |
1 4
|
sylib |
|- ( ph -> F : NN0 --> ran F ) |
| 6 |
|
simpl |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ph ) |
| 7 |
|
eldifi |
|- ( k e. ( NN0 \ ( 0 ..^ N ) ) -> k e. NN0 ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. NN0 ) |
| 9 |
3
|
zred |
|- ( ph -> N e. RR ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> N e. RR ) |
| 11 |
8
|
nn0red |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. RR ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> N e. ZZ ) |
| 13 |
|
simpr |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. ( NN0 \ ( 0 ..^ N ) ) ) |
| 14 |
12 13
|
nn0difffzod |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> -. k < N ) |
| 15 |
10 11 14
|
nltled |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> N <_ k ) |
| 16 |
6 8 15 2
|
syl21anc |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ( F ` k ) = Z ) |
| 17 |
5 16
|
suppss |
|- ( ph -> ( F supp Z ) C_ ( 0 ..^ N ) ) |