Metamath Proof Explorer


Theorem suppssnn0

Description: Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses suppssnn0.f φFFn0
suppssnn0.n φk0NkFk=Z
suppssnn0.1 φN
Assertion suppssnn0 φFsuppZ0..^N

Proof

Step Hyp Ref Expression
1 suppssnn0.f φFFn0
2 suppssnn0.n φk0NkFk=Z
3 suppssnn0.1 φN
4 dffn3 FFn0F:0ranF
5 1 4 sylib φF:0ranF
6 simpl φk00..^Nφ
7 eldifi k00..^Nk0
8 7 adantl φk00..^Nk0
9 3 zred φN
10 9 adantr φk00..^NN
11 8 nn0red φk00..^Nk
12 3 adantr φk00..^NN
13 simpr φk00..^Nk00..^N
14 12 13 nn0difffzod φk00..^N¬k<N
15 10 11 14 nltled φk00..^NNk
16 6 8 15 2 syl21anc φk00..^NFk=Z
17 5 16 suppss φFsuppZ0..^N