| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symg1bas.1 |  |-  G = ( SymGrp ` A ) | 
						
							| 2 |  | symg1bas.2 |  |-  B = ( Base ` G ) | 
						
							| 3 |  | symg1bas.0 |  |-  A = { I } | 
						
							| 4 |  | snfi |  |-  { I } e. Fin | 
						
							| 5 | 3 4 | eqeltri |  |-  A e. Fin | 
						
							| 6 | 1 2 | symghash |  |-  ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( # ` B ) = ( ! ` ( # ` A ) ) | 
						
							| 8 | 3 | fveq2i |  |-  ( # ` A ) = ( # ` { I } ) | 
						
							| 9 |  | hashsng |  |-  ( I e. V -> ( # ` { I } ) = 1 ) | 
						
							| 10 | 8 9 | eqtrid |  |-  ( I e. V -> ( # ` A ) = 1 ) | 
						
							| 11 | 10 | fveq2d |  |-  ( I e. V -> ( ! ` ( # ` A ) ) = ( ! ` 1 ) ) | 
						
							| 12 |  | fac1 |  |-  ( ! ` 1 ) = 1 | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( I e. V -> ( ! ` ( # ` A ) ) = 1 ) | 
						
							| 14 | 7 13 | eqtrid |  |-  ( I e. V -> ( # ` B ) = 1 ) |