| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symg1bas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
| 2 |
|
symg1bas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
symg1bas.0 |
⊢ 𝐴 = { 𝐼 } |
| 4 |
|
snfi |
⊢ { 𝐼 } ∈ Fin |
| 5 |
3 4
|
eqeltri |
⊢ 𝐴 ∈ Fin |
| 6 |
1 2
|
symghash |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) |
| 8 |
3
|
fveq2i |
⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝐼 } ) |
| 9 |
|
hashsng |
⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ { 𝐼 } ) = 1 ) |
| 10 |
8 9
|
eqtrid |
⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) = 1 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( ! ‘ ( ♯ ‘ 𝐴 ) ) = ( ! ‘ 1 ) ) |
| 12 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝐼 ∈ 𝑉 → ( ! ‘ ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 14 |
7 13
|
eqtrid |
⊢ ( 𝐼 ∈ 𝑉 → ( ♯ ‘ 𝐵 ) = 1 ) |