| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcfr.1 |
|- A e. _V |
| 2 |
|
tcwf |
|- ( A e. U. ( R1 " On ) -> ( TC ` A ) e. U. ( R1 " On ) ) |
| 3 |
|
r1elssi |
|- ( ( TC ` A ) e. U. ( R1 " On ) -> ( TC ` A ) C_ U. ( R1 " On ) ) |
| 4 |
|
wffr |
|- _E Fr U. ( R1 " On ) |
| 5 |
|
frss |
|- ( ( TC ` A ) C_ U. ( R1 " On ) -> ( _E Fr U. ( R1 " On ) -> _E Fr ( TC ` A ) ) ) |
| 6 |
4 5
|
mpi |
|- ( ( TC ` A ) C_ U. ( R1 " On ) -> _E Fr ( TC ` A ) ) |
| 7 |
2 3 6
|
3syl |
|- ( A e. U. ( R1 " On ) -> _E Fr ( TC ` A ) ) |
| 8 |
|
tcid |
|- ( A e. _V -> A C_ ( TC ` A ) ) |
| 9 |
1 8
|
ax-mp |
|- A C_ ( TC ` A ) |
| 10 |
|
tctr |
|- Tr ( TC ` A ) |
| 11 |
|
trfr |
|- ( ( Tr ( TC ` A ) /\ _E Fr ( TC ` A ) ) -> ( TC ` A ) C_ U. ( R1 " On ) ) |
| 12 |
10 11
|
mpan |
|- ( _E Fr ( TC ` A ) -> ( TC ` A ) C_ U. ( R1 " On ) ) |
| 13 |
9 12
|
sstrid |
|- ( _E Fr ( TC ` A ) -> A C_ U. ( R1 " On ) ) |
| 14 |
1
|
r1elss |
|- ( A e. U. ( R1 " On ) <-> A C_ U. ( R1 " On ) ) |
| 15 |
13 14
|
sylibr |
|- ( _E Fr ( TC ` A ) -> A e. U. ( R1 " On ) ) |
| 16 |
7 15
|
impbii |
|- ( A e. U. ( R1 " On ) <-> _E Fr ( TC ` A ) ) |