Metamath Proof Explorer


Theorem tcfr

Description: A set is well-founded if and only if its transitive closure is well-founded by e. . This characterization of well-founded sets is that in Definition I.9.20 of Kunen2 p. 53. (Contributed by Eric Schmidt, 26-Oct-2025)

Ref Expression
Hypothesis tcfr.1
|- A e. _V
Assertion tcfr
|- ( A e. U. ( R1 " On ) <-> _E Fr ( TC ` A ) )

Proof

Step Hyp Ref Expression
1 tcfr.1
 |-  A e. _V
2 tcwf
 |-  ( A e. U. ( R1 " On ) -> ( TC ` A ) e. U. ( R1 " On ) )
3 r1elssi
 |-  ( ( TC ` A ) e. U. ( R1 " On ) -> ( TC ` A ) C_ U. ( R1 " On ) )
4 wffr
 |-  _E Fr U. ( R1 " On )
5 frss
 |-  ( ( TC ` A ) C_ U. ( R1 " On ) -> ( _E Fr U. ( R1 " On ) -> _E Fr ( TC ` A ) ) )
6 4 5 mpi
 |-  ( ( TC ` A ) C_ U. ( R1 " On ) -> _E Fr ( TC ` A ) )
7 2 3 6 3syl
 |-  ( A e. U. ( R1 " On ) -> _E Fr ( TC ` A ) )
8 tcid
 |-  ( A e. _V -> A C_ ( TC ` A ) )
9 1 8 ax-mp
 |-  A C_ ( TC ` A )
10 tctr
 |-  Tr ( TC ` A )
11 trfr
 |-  ( ( Tr ( TC ` A ) /\ _E Fr ( TC ` A ) ) -> ( TC ` A ) C_ U. ( R1 " On ) )
12 10 11 mpan
 |-  ( _E Fr ( TC ` A ) -> ( TC ` A ) C_ U. ( R1 " On ) )
13 9 12 sstrid
 |-  ( _E Fr ( TC ` A ) -> A C_ U. ( R1 " On ) )
14 1 r1elss
 |-  ( A e. U. ( R1 " On ) <-> A C_ U. ( R1 " On ) )
15 13 14 sylibr
 |-  ( _E Fr ( TC ` A ) -> A e. U. ( R1 " On ) )
16 7 15 impbii
 |-  ( A e. U. ( R1 " On ) <-> _E Fr ( TC ` A ) )