| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcfr.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
tcwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 3 |
|
r1elssi |
⊢ ( ( TC ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝐴 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 4 |
|
wffr |
⊢ E Fr ∪ ( 𝑅1 “ On ) |
| 5 |
|
frss |
⊢ ( ( TC ‘ 𝐴 ) ⊆ ∪ ( 𝑅1 “ On ) → ( E Fr ∪ ( 𝑅1 “ On ) → E Fr ( TC ‘ 𝐴 ) ) ) |
| 6 |
4 5
|
mpi |
⊢ ( ( TC ‘ 𝐴 ) ⊆ ∪ ( 𝑅1 “ On ) → E Fr ( TC ‘ 𝐴 ) ) |
| 7 |
2 3 6
|
3syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → E Fr ( TC ‘ 𝐴 ) ) |
| 8 |
|
tcid |
⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( TC ‘ 𝐴 ) ) |
| 9 |
1 8
|
ax-mp |
⊢ 𝐴 ⊆ ( TC ‘ 𝐴 ) |
| 10 |
|
tctr |
⊢ Tr ( TC ‘ 𝐴 ) |
| 11 |
|
trfr |
⊢ ( ( Tr ( TC ‘ 𝐴 ) ∧ E Fr ( TC ‘ 𝐴 ) ) → ( TC ‘ 𝐴 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 12 |
10 11
|
mpan |
⊢ ( E Fr ( TC ‘ 𝐴 ) → ( TC ‘ 𝐴 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 13 |
9 12
|
sstrid |
⊢ ( E Fr ( TC ‘ 𝐴 ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 14 |
1
|
r1elss |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( E Fr ( TC ‘ 𝐴 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 16 |
7 15
|
impbii |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ E Fr ( TC ‘ 𝐴 ) ) |