| Step |
Hyp |
Ref |
Expression |
| 1 |
|
epse |
⊢ E Se 𝐴 |
| 2 |
|
r19.21v |
⊢ ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) ( Tr 𝐴 → 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( Tr 𝐴 → ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 3 |
|
trpred |
⊢ ( ( Tr 𝐴 ∧ 𝑦 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑦 ) = 𝑦 ) |
| 4 |
|
raleq |
⊢ ( Pred ( E , 𝐴 , 𝑦 ) = 𝑦 → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 5 |
|
dfss3 |
⊢ ( 𝑦 ⊆ ∪ ( 𝑅1 “ On ) ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 |
4 5
|
bitr4di |
⊢ ( Pred ( E , 𝐴 , 𝑦 ) = 𝑦 → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑦 ⊆ ∪ ( 𝑅1 “ On ) ) ) |
| 7 |
|
vex |
⊢ 𝑦 ∈ V |
| 8 |
7
|
r1elss |
⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑦 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 9 |
6 8
|
bitr4di |
⊢ ( Pred ( E , 𝐴 , 𝑦 ) = 𝑦 → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 10 |
3 9
|
syl |
⊢ ( ( Tr 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 11 |
10
|
biimpd |
⊢ ( ( Tr 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 12 |
11
|
expcom |
⊢ ( 𝑦 ∈ 𝐴 → ( Tr 𝐴 → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) ) |
| 13 |
12
|
a2d |
⊢ ( 𝑦 ∈ 𝐴 → ( ( Tr 𝐴 → ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) → ( Tr 𝐴 → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) ) |
| 14 |
2 13
|
biimtrid |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( E , 𝐴 , 𝑦 ) ( Tr 𝐴 → 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) → ( Tr 𝐴 → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) ) |
| 15 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( Tr 𝐴 → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( Tr 𝐴 → 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) ) ) |
| 17 |
14 16
|
frins2 |
⊢ ( ( E Fr 𝐴 ∧ E Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( Tr 𝐴 → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 18 |
1 17
|
mpan2 |
⊢ ( E Fr 𝐴 → ∀ 𝑦 ∈ 𝐴 ( Tr 𝐴 → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 19 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( Tr 𝐴 → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( Tr 𝐴 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 20 |
18 19
|
sylib |
⊢ ( E Fr 𝐴 → ( Tr 𝐴 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 21 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) |
| 22 |
20 21
|
imbitrrdi |
⊢ ( E Fr 𝐴 → ( Tr 𝐴 → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) ) |
| 23 |
22
|
impcom |
⊢ ( ( Tr 𝐴 ∧ E Fr 𝐴 ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |