Metamath Proof Explorer


Theorem trfr

Description: A transitive class well-founded by e. is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of Kunen2 p. 53. (Contributed by Eric Schmidt, 26-Oct-2025)

Ref Expression
Assertion trfr Tr A E Fr A A R1 On

Proof

Step Hyp Ref Expression
1 epse E Se A
2 r19.21v z Pred E A y Tr A z R1 On Tr A z Pred E A y z R1 On
3 trpred Tr A y A Pred E A y = y
4 raleq Pred E A y = y z Pred E A y z R1 On z y z R1 On
5 dfss3 y R1 On z y z R1 On
6 4 5 bitr4di Pred E A y = y z Pred E A y z R1 On y R1 On
7 vex y V
8 7 r1elss y R1 On y R1 On
9 6 8 bitr4di Pred E A y = y z Pred E A y z R1 On y R1 On
10 3 9 syl Tr A y A z Pred E A y z R1 On y R1 On
11 10 biimpd Tr A y A z Pred E A y z R1 On y R1 On
12 11 expcom y A Tr A z Pred E A y z R1 On y R1 On
13 12 a2d y A Tr A z Pred E A y z R1 On Tr A y R1 On
14 2 13 biimtrid y A z Pred E A y Tr A z R1 On Tr A y R1 On
15 eleq1w y = z y R1 On z R1 On
16 15 imbi2d y = z Tr A y R1 On Tr A z R1 On
17 14 16 frins2 E Fr A E Se A y A Tr A y R1 On
18 1 17 mpan2 E Fr A y A Tr A y R1 On
19 r19.21v y A Tr A y R1 On Tr A y A y R1 On
20 18 19 sylib E Fr A Tr A y A y R1 On
21 dfss3 A R1 On y A y R1 On
22 20 21 imbitrrdi E Fr A Tr A A R1 On
23 22 impcom Tr A E Fr A A R1 On