| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfr.1 |
|- F = recs ( G ) |
| 2 |
|
eqid |
|- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } |
| 3 |
2
|
tfrlem9 |
|- ( A e. dom recs ( G ) -> ( recs ( G ) ` A ) = ( G ` ( recs ( G ) |` A ) ) ) |
| 4 |
1
|
dmeqi |
|- dom F = dom recs ( G ) |
| 5 |
3 4
|
eleq2s |
|- ( A e. dom F -> ( recs ( G ) ` A ) = ( G ` ( recs ( G ) |` A ) ) ) |
| 6 |
1
|
fveq1i |
|- ( F ` A ) = ( recs ( G ) ` A ) |
| 7 |
1
|
reseq1i |
|- ( F |` A ) = ( recs ( G ) |` A ) |
| 8 |
7
|
fveq2i |
|- ( G ` ( F |` A ) ) = ( G ` ( recs ( G ) |` A ) ) |
| 9 |
5 6 8
|
3eqtr4g |
|- ( A e. dom F -> ( F ` A ) = ( G ` ( F |` A ) ) ) |