| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tfr.1 | 
							 |-  F = recs ( G )  | 
						
						
							| 2 | 
							
								
							 | 
							ordeleqon | 
							 |-  ( Ord A <-> ( A e. On \/ A = On ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } | 
						
						
							| 4 | 
							
								3
							 | 
							tfrlem15 | 
							 |-  ( A e. On -> ( A e. dom recs ( G ) <-> ( recs ( G ) |` A ) e. _V ) )  | 
						
						
							| 5 | 
							
								1
							 | 
							dmeqi | 
							 |-  dom F = dom recs ( G )  | 
						
						
							| 6 | 
							
								5
							 | 
							eleq2i | 
							 |-  ( A e. dom F <-> A e. dom recs ( G ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							reseq1i | 
							 |-  ( F |` A ) = ( recs ( G ) |` A )  | 
						
						
							| 8 | 
							
								7
							 | 
							eleq1i | 
							 |-  ( ( F |` A ) e. _V <-> ( recs ( G ) |` A ) e. _V )  | 
						
						
							| 9 | 
							
								4 6 8
							 | 
							3bitr4g | 
							 |-  ( A e. On -> ( A e. dom F <-> ( F |` A ) e. _V ) )  | 
						
						
							| 10 | 
							
								
							 | 
							onprc | 
							 |-  -. On e. _V  | 
						
						
							| 11 | 
							
								
							 | 
							elex | 
							 |-  ( On e. dom F -> On e. _V )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mto | 
							 |-  -. On e. dom F  | 
						
						
							| 13 | 
							
								
							 | 
							eleq1 | 
							 |-  ( A = On -> ( A e. dom F <-> On e. dom F ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mtbiri | 
							 |-  ( A = On -> -. A e. dom F )  | 
						
						
							| 15 | 
							
								3
							 | 
							tfrlem13 | 
							 |-  -. recs ( G ) e. _V  | 
						
						
							| 16 | 
							
								1 15
							 | 
							eqneltri | 
							 |-  -. F e. _V  | 
						
						
							| 17 | 
							
								
							 | 
							reseq2 | 
							 |-  ( A = On -> ( F |` A ) = ( F |` On ) )  | 
						
						
							| 18 | 
							
								1
							 | 
							tfr1a | 
							 |-  ( Fun F /\ Lim dom F )  | 
						
						
							| 19 | 
							
								18
							 | 
							simpli | 
							 |-  Fun F  | 
						
						
							| 20 | 
							
								
							 | 
							funrel | 
							 |-  ( Fun F -> Rel F )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							ax-mp | 
							 |-  Rel F  | 
						
						
							| 22 | 
							
								18
							 | 
							simpri | 
							 |-  Lim dom F  | 
						
						
							| 23 | 
							
								
							 | 
							limord | 
							 |-  ( Lim dom F -> Ord dom F )  | 
						
						
							| 24 | 
							
								
							 | 
							ordsson | 
							 |-  ( Ord dom F -> dom F C_ On )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							mp2b | 
							 |-  dom F C_ On  | 
						
						
							| 26 | 
							
								
							 | 
							relssres | 
							 |-  ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F )  | 
						
						
							| 27 | 
							
								21 25 26
							 | 
							mp2an | 
							 |-  ( F |` On ) = F  | 
						
						
							| 28 | 
							
								17 27
							 | 
							eqtrdi | 
							 |-  ( A = On -> ( F |` A ) = F )  | 
						
						
							| 29 | 
							
								28
							 | 
							eleq1d | 
							 |-  ( A = On -> ( ( F |` A ) e. _V <-> F e. _V ) )  | 
						
						
							| 30 | 
							
								16 29
							 | 
							mtbiri | 
							 |-  ( A = On -> -. ( F |` A ) e. _V )  | 
						
						
							| 31 | 
							
								14 30
							 | 
							2falsed | 
							 |-  ( A = On -> ( A e. dom F <-> ( F |` A ) e. _V ) )  | 
						
						
							| 32 | 
							
								9 31
							 | 
							jaoi | 
							 |-  ( ( A e. On \/ A = On ) -> ( A e. dom F <-> ( F |` A ) e. _V ) )  | 
						
						
							| 33 | 
							
								2 32
							 | 
							sylbi | 
							 |-  ( Ord A -> ( A e. dom F <-> ( F |` A ) e. _V ) )  |