| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 | 1 | tfrlem9a |  |-  ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) | 
						
							| 3 | 2 | adantl |  |-  ( ( B e. On /\ B e. dom recs ( F ) ) -> ( recs ( F ) |` B ) e. _V ) | 
						
							| 4 | 1 | tfrlem13 |  |-  -. recs ( F ) e. _V | 
						
							| 5 |  | simpr |  |-  ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( recs ( F ) |` B ) e. _V ) | 
						
							| 6 |  | resss |  |-  ( recs ( F ) |` B ) C_ recs ( F ) | 
						
							| 7 | 6 | a1i |  |-  ( dom recs ( F ) C_ B -> ( recs ( F ) |` B ) C_ recs ( F ) ) | 
						
							| 8 | 1 | tfrlem6 |  |-  Rel recs ( F ) | 
						
							| 9 |  | resdm |  |-  ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) | 
						
							| 11 |  | ssres2 |  |-  ( dom recs ( F ) C_ B -> ( recs ( F ) |` dom recs ( F ) ) C_ ( recs ( F ) |` B ) ) | 
						
							| 12 | 10 11 | eqsstrrid |  |-  ( dom recs ( F ) C_ B -> recs ( F ) C_ ( recs ( F ) |` B ) ) | 
						
							| 13 | 7 12 | eqssd |  |-  ( dom recs ( F ) C_ B -> ( recs ( F ) |` B ) = recs ( F ) ) | 
						
							| 14 | 13 | eleq1d |  |-  ( dom recs ( F ) C_ B -> ( ( recs ( F ) |` B ) e. _V <-> recs ( F ) e. _V ) ) | 
						
							| 15 | 5 14 | syl5ibcom |  |-  ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( dom recs ( F ) C_ B -> recs ( F ) e. _V ) ) | 
						
							| 16 | 4 15 | mtoi |  |-  ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> -. dom recs ( F ) C_ B ) | 
						
							| 17 | 1 | tfrlem8 |  |-  Ord dom recs ( F ) | 
						
							| 18 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 19 | 18 | adantr |  |-  ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> Ord B ) | 
						
							| 20 |  | ordtri1 |  |-  ( ( Ord dom recs ( F ) /\ Ord B ) -> ( dom recs ( F ) C_ B <-> -. B e. dom recs ( F ) ) ) | 
						
							| 21 | 20 | con2bid |  |-  ( ( Ord dom recs ( F ) /\ Ord B ) -> ( B e. dom recs ( F ) <-> -. dom recs ( F ) C_ B ) ) | 
						
							| 22 | 17 19 21 | sylancr |  |-  ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( B e. dom recs ( F ) <-> -. dom recs ( F ) C_ B ) ) | 
						
							| 23 | 16 22 | mpbird |  |-  ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> B e. dom recs ( F ) ) | 
						
							| 24 | 3 23 | impbida |  |-  ( B e. On -> ( B e. dom recs ( F ) <-> ( recs ( F ) |` B ) e. _V ) ) |