| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 | 1 | tfrlem8 |  |-  Ord dom recs ( F ) | 
						
							| 3 |  | ordirr |  |-  ( Ord dom recs ( F ) -> -. dom recs ( F ) e. dom recs ( F ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  -. dom recs ( F ) e. dom recs ( F ) | 
						
							| 5 |  | eqid |  |-  ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 6 | 1 5 | tfrlem12 |  |-  ( recs ( F ) e. _V -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A ) | 
						
							| 7 |  | elssuni |  |-  ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ U. A ) | 
						
							| 8 | 1 | recsfval |  |-  recs ( F ) = U. A | 
						
							| 9 | 7 8 | sseqtrrdi |  |-  ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ recs ( F ) ) | 
						
							| 10 |  | dmss |  |-  ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ recs ( F ) -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ dom recs ( F ) ) | 
						
							| 11 | 6 9 10 | 3syl |  |-  ( recs ( F ) e. _V -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ dom recs ( F ) ) | 
						
							| 12 | 2 | a1i |  |-  ( recs ( F ) e. _V -> Ord dom recs ( F ) ) | 
						
							| 13 |  | dmexg |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. _V ) | 
						
							| 14 |  | elon2 |  |-  ( dom recs ( F ) e. On <-> ( Ord dom recs ( F ) /\ dom recs ( F ) e. _V ) ) | 
						
							| 15 | 12 13 14 | sylanbrc |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. On ) | 
						
							| 16 |  | sucidg |  |-  ( dom recs ( F ) e. On -> dom recs ( F ) e. suc dom recs ( F ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. suc dom recs ( F ) ) | 
						
							| 18 | 1 5 | tfrlem10 |  |-  ( dom recs ( F ) e. On -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) | 
						
							| 19 |  | fndm |  |-  ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) | 
						
							| 20 | 15 18 19 | 3syl |  |-  ( recs ( F ) e. _V -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) | 
						
							| 21 | 17 20 | eleqtrrd |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) | 
						
							| 22 | 11 21 | sseldd |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. dom recs ( F ) ) | 
						
							| 23 | 4 22 | mto |  |-  -. recs ( F ) e. _V |