| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 |  | tfrlem.3 |  |-  C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 3 | 1 | tfrlem8 |  |-  Ord dom recs ( F ) | 
						
							| 4 | 3 | a1i |  |-  ( recs ( F ) e. _V -> Ord dom recs ( F ) ) | 
						
							| 5 |  | dmexg |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. _V ) | 
						
							| 6 |  | elon2 |  |-  ( dom recs ( F ) e. On <-> ( Ord dom recs ( F ) /\ dom recs ( F ) e. _V ) ) | 
						
							| 7 | 4 5 6 | sylanbrc |  |-  ( recs ( F ) e. _V -> dom recs ( F ) e. On ) | 
						
							| 8 |  | onsuc |  |-  ( dom recs ( F ) e. On -> suc dom recs ( F ) e. On ) | 
						
							| 9 | 1 2 | tfrlem10 |  |-  ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) | 
						
							| 10 | 1 2 | tfrlem11 |  |-  ( dom recs ( F ) e. On -> ( z e. suc dom recs ( F ) -> ( C ` z ) = ( F ` ( C |` z ) ) ) ) | 
						
							| 11 | 10 | ralrimiv |  |-  ( dom recs ( F ) e. On -> A. z e. suc dom recs ( F ) ( C ` z ) = ( F ` ( C |` z ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( z = y -> ( C ` z ) = ( C ` y ) ) | 
						
							| 13 |  | reseq2 |  |-  ( z = y -> ( C |` z ) = ( C |` y ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( z = y -> ( F ` ( C |` z ) ) = ( F ` ( C |` y ) ) ) | 
						
							| 15 | 12 14 | eqeq12d |  |-  ( z = y -> ( ( C ` z ) = ( F ` ( C |` z ) ) <-> ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 16 | 15 | cbvralvw |  |-  ( A. z e. suc dom recs ( F ) ( C ` z ) = ( F ` ( C |` z ) ) <-> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) | 
						
							| 17 | 11 16 | sylib |  |-  ( dom recs ( F ) e. On -> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) | 
						
							| 18 |  | fneq2 |  |-  ( x = suc dom recs ( F ) -> ( C Fn x <-> C Fn suc dom recs ( F ) ) ) | 
						
							| 19 |  | raleq |  |-  ( x = suc dom recs ( F ) -> ( A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) <-> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 20 | 18 19 | anbi12d |  |-  ( x = suc dom recs ( F ) -> ( ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) <-> ( C Fn suc dom recs ( F ) /\ A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) | 
						
							| 21 | 20 | rspcev |  |-  ( ( suc dom recs ( F ) e. On /\ ( C Fn suc dom recs ( F ) /\ A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 22 | 8 9 17 21 | syl12anc |  |-  ( dom recs ( F ) e. On -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 23 | 7 22 | syl |  |-  ( recs ( F ) e. _V -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 24 |  | snex |  |-  { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } e. _V | 
						
							| 25 |  | unexg |  |-  ( ( recs ( F ) e. _V /\ { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } e. _V ) -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. _V ) | 
						
							| 26 | 24 25 | mpan2 |  |-  ( recs ( F ) e. _V -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. _V ) | 
						
							| 27 | 2 26 | eqeltrid |  |-  ( recs ( F ) e. _V -> C e. _V ) | 
						
							| 28 |  | fneq1 |  |-  ( f = C -> ( f Fn x <-> C Fn x ) ) | 
						
							| 29 |  | fveq1 |  |-  ( f = C -> ( f ` y ) = ( C ` y ) ) | 
						
							| 30 |  | reseq1 |  |-  ( f = C -> ( f |` y ) = ( C |` y ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( f = C -> ( F ` ( f |` y ) ) = ( F ` ( C |` y ) ) ) | 
						
							| 32 | 29 31 | eqeq12d |  |-  ( f = C -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 33 | 32 | ralbidv |  |-  ( f = C -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) | 
						
							| 34 | 28 33 | anbi12d |  |-  ( f = C -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( f = C -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) | 
						
							| 36 | 35 1 | elab2g |  |-  ( C e. _V -> ( C e. A <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) | 
						
							| 37 | 27 36 | syl |  |-  ( recs ( F ) e. _V -> ( C e. A <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) | 
						
							| 38 | 23 37 | mpbird |  |-  ( recs ( F ) e. _V -> C e. A ) |